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Abstract

Uchôa, Anderson Gonçalves; Garcia, Alessandro (Advisor). Un-
veiling Social and Technical Facets of Design Degradation
in Modern Code Review. Rio de Janeiro, 2021. 120p. Tese de
Doutorado – Departamento de Informática, Pontifícia Universidade
Católica do Rio de Janeiro.

Software design is a key concern in code review through which developers
actively discuss and improve each software change. Nevertheless, code review is
a collaborative task influenced by technical and social aspects. Consequently,
these aspects can play a key role in how software design degrades. They can
contribute to accelerating or reversing design degradation during the process
of each single change’s review. However, there is little understanding about: (i)
the impact of code review and their practices on design degradation over time;
and (ii) to what extent social and technical aspects are related to the reduction
or increase of design degradation. We addressed these limitations driven by two
goals. Our first goal is to provide a characterization of how modern code reviews
impact design degradation during software maintenance. We consider various
technical and socials aspects to study the code reviews’ impact. Our second
goal is to explore the role of technical and social aspects in distinguishing and
predicting (un)impactful design changes during code reviews, using machine
learning techniques. A design change is considered impactful when it varies
the density and diversity of degradation symptoms (i.e., code smells). These
goals were addressed with two empirical studies. Our first study reports a
characterization of the impact of code reviews on the evolution of degradation
symptoms along each code review. We also took into consideration when there
was an explicit goal or discussions around software design. Our second study
reports an analysis of technical and social aspects influencing changes along
all the revisions within a single code review. Then, we could observe the role
of social aspects in distinguishing and predicting design impactful changes.
Our results show that the majority of code reviews have little or no impact on
degradation, even with explicit design discussions. Long discussions and a high
rate of reviewers’ disagreement increase the risk of degradation. Both social
and technical aspects are able to distinguish design (un)impactful changes.
In summary, our results provided us with a better understanding of influential
aspects that help us in deriving guidelines to mitigate degradation during code
reviews. Our results also provide insights to design a new code review tools
also able to warn developers early about the harmful design impact along code
reviews.
Keywords
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Design Degradation; Modern Code Review; Code Review Practices;
Influential Aspects; Machine Learning.
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Resumo

Uchôa, Anderson Gonçalves; Garcia, Alessandro. Revelando as
Facetas Sociais e Técnicas da Degradação do Design na
Revisão de Código Moderna. Rio de Janeiro, 2021. 120p.
Tese de Doutorado – Departamento de Informática, Pontifícia
Universidade Católica do Rio de Janeiro.

O design de software é uma preocupação fundamental na revisão de
código, por meio da qual os desenvolvedores discutem ativamente e melhoram
cada mudança de software. No entanto, a revisão de código é uma tarefa
colaborativa influenciada por aspectos técnicos e sociais. Consequentemente,
esses aspectos podem desempenhar um papel fundamental em como o design
de software se degrada. Eles podem contribuir para acelerar ou reverter a
degradação do design durante o processo de revisão de cada mudança. No
entanto, há pouco entendimento sobre: (i) o impacto da revisão do código
e suas práticas na degradação do design ao longo do tempo; e (ii) em que
medida os aspectos sociais e técnicos estão relacionados com a redução ou
aumento da degradação do design. Abordamos essas limitações motivadas
por dois objetivos. Nosso primeiro objetivo é fornecer uma caracterização
de como as revisões de código modernas afetam a degradação do design
durante a manutenção do software. Consideramos vários aspectos técnicos
e sociais para estudar o impacto das revisões de código, utilizando técnicas
de aprendizado de máquina. Nosso segundo objetivo é explorar o papel dos
aspectos técnicos e sociais em distinguir e predizer mudanças de design
(não) impactantes durante as revisões de código. Uma mudança de design
é considerada impactante quando varia a densidade e a diversidade dos
sintomas de degradação (ou seja, cheiros de código). Esses objetivos foram
abordados em dois estudos empíricos. Nosso primeiro estudo relata uma
caracterização do impacto das revisões de código na evolução dos sintomas
de degradação ao longo de cada revisão de código. Também levamos em
consideração quando havia um objetivo explícito ou discussões sobre design
de software. Nosso segundo estudo relata uma análise dos aspectos técnicos
e sociais que influenciam as mudanças ao longo de todas as revisões em uma
única revisão de código. Então, pudemos observar o papel dos aspectos sociais
em distinguir e predizer mudanças impactantes no design. Nossos resultados
mostram que a maioria das revisões de código tem pouco ou nenhum impacto
na degradação, mesmo com discussões explícitas de design. Longas discussões
e uma alta taxa de discordância dos revisores aumentam o risco de degradação.
Os aspectos sociais e técnicos são capazes de distinguir mudanças de design
(não) impactantes. Em resumo, nossos resultados nos forneceram uma melhor
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compreensão dos aspectos influentes que nos ajudam a derivar diretrizes
para mitigar a degradação durante as revisões de código. Nossos resultados
também fornecem insights para projetar novas ferramentas de revisão de
código, também capazes de alertar os desenvolvedores com antecedência sobre
o impacto prejudicial do design ao longo das revisões de código.

Palavras-chave
Degradação do Design; Revisão de Código Moderna; Práticas de Revisão

de Código; Aspectos Influentes; Aprendizado de Máquina.
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1
Introduction

An earlier, shortened version of this chapter appears in
the Proceedings of the 28th ACM Joint European Software Engineering

Conference and Symposium on the Foundations of Software Engineering (FSE) [158].

Modern code review is a lightweight, informal, asynchronous, and tool-
assisted technique aimed at detecting and removing issues introduced during
software development [14]. Both industrial [16] and open-source [17] projects
have been adopting modern code reviews on a daily basis as a way to improve
the quality of their systems [14]. However, modern code reviews can be affected
by both technical and social aspects. For instance, the technical aspects
are those that characterize the source code, the file modifications, and a
textual description of the change. Social aspects characterize the developer’s
experience, collaboration network, and participation in discussions during a
code review.

A key concern of all code review stakeholders, including code owners and
reviewers, is to remain aware of ongoing changes impacting the design [90, 21,
70]. In fact, previous studies [40, 159, 160] have observed that during code
reviews, the involved stakeholders identify changes that impact the design in
a bottom-up way, i.e., they start by identifying poor code structures – also
known as code smells – at the low level and not by the top-down way, i.e.,
from high-level to low-level design. This approach is mainly because reviews
are context-sensitive as reviewers are more aware of the details of the design
decisions reviewed in the source code.

Although developers’ awareness about the impact of design is an impor-
tant point, many types of social and technical aspects can influence – either
alone or simultaneously – how the design degradation can occur. Moreover,
such aspects can influence to which extent the degradation can be slowed
down or accelerated. For instance, the quality of each code change might
be influenced by the developer(s) working on it and the change process it-
self [21, 15, 60, 90].

Software design degrades whenever one or more symptoms of poor
structures end up being introduced by a change. In this context, if not
properly avoided, identified, and combated, design degradation has severe
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Chapter 1. Introduction 19

consequences to software maintenance and the project continuation in the
future [18, 19, 20, 34, 46, 91]. An example of a degradation symptom is when
a class is overloaded with multiple unrelated functionalities, making it difficult
to use. It also increases the chances of causing ripple change effects on other
classes.

Despite its importance, we know little on how to design degradation
evolves over time, both across and within reviews. In fact, there is a relation
between design degradation and code review [15, 21, 24, 40, 73]. However,
such relation was not deeply scrutinized in practice. Thus, we are likely to
be biasing the research and practice of modern code review by ignoring the
analysis of code review practices and the impact of modification across and
within reviews. Since code reviews also aim to improve design quality, one
could expect that, over time, those reviews would gradually reduce multiple
degradation symptoms.

Prior studies reveal the positive influence of certain technical and social
aspects in software engineering [93, 95, 100, 101]. Moreover, we lack evidence on
to what extent these aspects can influence – either alone or simultaneously – the
design degradation during code reviews. Hence, a better understanding of these
aspects might help us derive guidelines for avoiding or mitigating degradation
during code reviews. This understanding can also help to improve the current
code review practices and develop a new generation of tools for assisting
developers on becoming early becoming aware about the design impact during
code reviews.

In this context, this Doctoral research focuses on understanding how
technical and social aspects can be explored to better support design-driven code
reviews and the review process itself. In other words, we aim to explore the
social and technical facets of software design degradation in code reviews.
Thus, this doctoral research aims to answer: How to better support code
review stakeholders in combating design degradation of their software systems?.
To answer this question, we aim to employ quantitative methods, including
mining-based investigation.

1.1
Motivating Example

This section demonstrates a real scenario in which degradation symp-
toms were introduced during the code review process. We select the review
53,827 [55] from the jgit system to motivate this Doctoral Research and ex-
emplify the phenomenon we investigate. The goal of the review task was to
“delete non empty directories before checkout a path”. The task was performed
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Chapter 1. Introduction 20

by one developer and reviewed by two others. As shown in Figure 1.1, through
the course of this particular review, different aspects of the code change have
been discussed. The main focus of the discussions was related to the functional
requirements. Reviewers were concerned, for instance, with possible side effects
that the functional change could introduce. Besides that, was there also a great
concern about evolving the automated tests accordingly.

Only after 16 revisions in the review, there was a comment about struc-
tural design. The reviewer complained about the use of a boolean parameter
in the method checkoutEntry from the DirCacheCheckout class. However, the
author disagreed with the reviewer’s comment, arguing that there would be
no problem with the use of the boolean parameter. After that, the reviewer
said that he would not insist, implying that he continues to disagree with the
design decision being discussed. After that, no other comments regarding the
structural design were made by the reviewers. As a possible consequence of
this disagreement between those involved, many symptoms of potential degra-
dation were ignored by the reviewers and prevailed in the system.

For example, we observed several occurrences of a fine-grained smell
called Magic Number. This type of smell occurs when a literal number, which
represents a specific meaning is used in the code by the programmer. The use
of a literal number in code structures – such as if statements and assignments
– are not advisable because it does not make explicit what the number really
means. Instead, the recommended practice is to use constants or enumerations
that make the meaning of numbers explicit. Instead of using the recommended

revision
1

revision
6

revision
11

revision
15

revision
16

revision
22

jgit - Review 53827

org.eclipse.jgit.util.FileUtils
org.eclipse.jgit.dircache.DirCacheCheckout 56

4

Discussions about functional
requirements, side effects, and tests.

# of
Symptoms

org.eclipse.jgit.util.FileUtils
org.eclipse.jgit.dircache.DirCacheCheckout 57

16

Disagreement between author and
reviewer regarding structural design.

...

Figure 1.1: Example of a Code Review that Introduced Degradation Symptoms
in the jgit System
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practice, the author chose to comment on the code with an explanation of the
meaning of the numbers involved.

Although the use of comments is a valid approach, it could be combined
with the use of constants or enumerations to obtain a higher quality design
and to prevent the same number, and its respective explanatory comment,
from having to be repeated in several parts of the code. This is a problem that
could be identified and removed during code review. As the repetitive use of
the same number grows in the code, it also makes the risk higher in reducing
program comprehension and inducing bugs. However, due to the great concern
with several other aspects, such as functional requirements, non-functional
requirements, and tests, the developers did not pay enough attention to the
structural quality of the code.

In addition, the developers do not see the possible degradation in
the changed code. As a consequence, new degradation symptoms emerged
throughout the review. For instance, new occurrences of Long Statement,
Complex Method, Empty Catch Clause, and Magic Number were introduced in
methods of the FileUtils class. Moreover, other classes that were changed also
presented more symptoms of possible degradation. Thus, it would be important
to effectively assess the design of changed classes during code review as design
problems may arise or become more severe during the review process. For
instance, the co-occurrence of various Complex Methods, in the same classes is
usually a sign of critical architectural problems, such as Component Overload
or Scattered Functionality [29, 34].

1.2
Problem Statement and Limitations of Related Work

This section presents our general and specific research problems. More-
over, we discuss why related work does not address such research problems.
In the previous section, we discussed and illustrated how degradation symp-
toms may be neglected, introduced, or removed throughout a code review in
practice. The example illustrated how certain code review practices, such as
disagreement among reviewers, might be a sign of the introduction or preva-
lence of degradation symptoms during code reviews.

On the impact of modern code review and their practices on design
degradation. There are multiple studies about the perspective of developers
about design degradation [28, 34, 37, 69, 91]. Other studies focus on the use of
diversity and density of symptoms (i.e., code smells) as characteristics of design
degradation [29, 67, 68]. For instance, Sousa et al. [34] identified five categories
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of symptoms upon which developers often rely to identify design problems.
Similar to other studies [37, 40, 91], they observed that developers tend to
combine multiple symptoms, by considering dimensions such as their density,
diversity, and granularity to decide if there is design degradation. Oizumi et
al. [29] investigated if degradation symptoms appear with higher density and
diversity in classes refactored by developers. The authors observed that despite
not being always removed by refactorings, some types of symptoms may be
indeed strong indicators of design problems.

Complementary, Ahmed et al. [67] analyzed how open source projects get
worse in terms of design degradation. The authors identified strong evidence
that the density of design problems builds up over time. Finally, Mannan et
al. [68] compared the occurrence of degradation symptoms in Android and
desktop systems in terms of their variety, density, and distribution.

Other studies have investigated the impact of modern code review on
design quality [11, 15, 21, 24, 40]. For instance, Morales et al. [24] studied
the impact of both the code review coverage (proportion of change code
reviewed) and the reviewer involvement in the prevalence or removal of smells.
They observed that high coverage and review participation can reduce the
occurrence of smells. Later, Mcintosh et al. [11] suggested that coverage,
reviewer’s participation, and expertise play high impacts on bug introduction.
Concerning the severity of smells, Pascarella et al. [40] observed that active
and participative code reviews have a significant influence on the reduction of
code smell severity. And about the design of the systems, Zanaty et al. [21]
observed that design-related discussion during code review is still rare. Finally,
Paixão et al. [15] studied the code review impact on the high-level design. They
observed that only 31% of the reviews with design discussions have a noticeable
impact on the structural high-level design.

Despite the existing knowledge on design degradation and the impact of
modern code review on design quality, the majority of these studies are limited
in scope. A result is that there is little understanding of the impact of modern
code review on reducing design degradation over time. More specifically, even
though studies have been investigating the impact of modern code review on
design quality [11, 15, 21, 24, 40], most of them only address the relation
between modern code review – and their practices – and design degradation
in a constrained manner. Such studies tend to analyze design degradation
considering only single events (related to design degradation), such as the
introduction of a single design problem [34, 37], or simply analyzing the
degradation frequency [28, 29, 41, 40].

In addition, such studies have not assessed how the process of design
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degradation evolution is impacted: (i) within each single review, and (ii) across
multiple reviews. Consequently, one cannot understand how certain code review
practices, related to review intensity, developer participation, and the review
duration, consistently reduce or further increase degradation as the project
evolves. Hence, it remains unclear if and to what extent code review helps
to combat design degradation. Moreover, there is little knowledge about the
impact of developers’ design discussions on degradation. Additionally, we do
not know which practices may strengthen the combat or the acceleration of
degradation. Therefore, aiming at deriving this knowledge, our first research
problem is states as follows.

Research Problem 1. There is little knowledge about the impact of
modern code review and – their practices – on design degradation over
time.

On the role of social aspects on design impactful changes in modern code
reviews. Software design is a key concern in code review through which de-
velopers actively discuss and improve each code change. Nevertheless, code
review is predominantly a cooperative task influenced by both technical and
social aspects. In fact, there are multiple studies about the effect of technical
and social aspects in code reviews [73, 80, 81, 82, 85, 89]. For instance, as-
pects related to relationships among developers have been investigated by the
following studies. Huang et al. [80] studied issues related to conflicts among de-
velopers in code review. They indicate that conflicts generally have side effects
on developers’ participation, while constructive suggestions increase retaining
the developers. Later, Bosu et al. [85] studied the impact of interpersonal re-
lations on the patch review. They found that the code author is one of the
important factors for reviewers to decide to review a patch or not.

On the other hand, the following studies explore different facets related
to participation. Ruangwan et al. [81] have investigated how many reviewers
did not respond to a review invitation. The authors found that the more
reviewers were invited to a patch, the more likely it was to receive a response.
These results show the importance of the active engagement of reviewers. In
a complementary way, Thongtanunam et al. [82] investigated patches that do
not attract reviewers, patches that are not discussed, and those receiving slow
initial feedback. They found that the length of the patch description plays
an important role in the likelihood of receiving poor reviewer participation
or discussion. Other studies have investigated aspects of communication and
confusion. Barbosa et al. [73] observed that communication dynamics among
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developers and discussion content can contribute to combating or amplifying
design degradation. Ebert et al. [89] found that missing rationale and lack of
familiarity with the code are the major reasons for confusion in code review.

Despite the prior studies revealing the influence of certain technical and
social aspects in code reviews, none of them investigated to what extent these
aspects can influence – either alone or simultaneously – the design degradation
during code reviews. For instance, the quality of each code change might be
influenced by the experience of developers working on it and the change process
itself [15, 21, 60, 90]. Consequently, these aspects can play a key role in how
software design degrades. They can also contribute to accelerating or reversing
the degradation during the process of each single code change’s review.

The social and technical aspects are often captured through the extrac-
tion of different kinds of metrics. For instance, the number of lines that were
added and deleted in a specific file helps us to measure the intensity of modi-
fication in such a file. In this context, in code review platforms, stakeholders
have either technical or social information at their disposal to be used as
additional information, both before or after each change. Social information
includes the developers’ experience, their collaboration network, and participa-
tion in discussions during a code review [7, 85, 97, 99]. Technical information
includes aspects related to the source code, files, and the description of a
change [49, 94, 96, 99]. Moreover, this information is available after changes
and revisions are done during the review.

Despite the large, diverse, rich information from social and technical
aspects in code review platforms, the contribution of using technical and social
metrics is often observed to characterize and predict failures [93, 95, 100, 101].
However, no study has done so in the context of design degradation. In fact,
their use to discriminate and predict design impactful changes has not been
investigated in depth so far [73, 90]. In this context, such metrics can act as
indicators of design impactfulness of ongoing changes along the code review
process [73]. In fact, the early identification of impactful changes that degrade
the design is important during code review [33, 74, 136].

In other words, if these harmful changes are not reversed early, i.e., before
a code review is ended, rework will be necessary after the changes of the last
merged revision. Further changes with time-consuming refactorings will have
to be applied later. Given the costs of design refactorings, they are unlikely to
be applied and code smells will be increasingly compounded over time, thereby
accelerating the design degradation [15, 136].

However, there is no empirical evidence about which technical and social
aspects captured as metrics can distinguish the impactfulness of design changes
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during code reviews. Moreover, there is little knowledge of whether the use of
these aspects represented as features can be used as a proxy to predict design
impactful changes. Therefore, we also do not know if the use of supervised
machine learning techniques can assist developers to automatically determine
whether a code change is impactful or not. Hence, it remains unclear which
metrics, used as features, are the best predictor, as well as the effectiveness
of combining social and technical features for predicting design (un-)impactful
changes. Therefore, aiming at deriving this knowledge, our second research
problem is states as follows.

Research Problem 2. There is a lack of empirical evidence on the role
of social aspects in distinguishing and predicting (un)impactful design
changes.

By studying these two specific research problems, we expect to under-
stand how technical and social aspects can be positively explored to better
support code reviewers in their work and facilitate design-driven reviews. In
summary, the investigation of these specific problems discussed heretofore will
contribute to better understand how to support design-driven code reviews and
how technical and social aspects can be positively explored to better support
the code review process.

1.3
Goal and Research Questions

The research problems aforementioned are essential to provide the knowl-
edge required to understand (i) the impact of modern code review and their
practices on design degradation, (ii) the role that social aspects play in dis-
tinguishing and predicting design impactful changes, and, finally, (iii) how to
provide the support to design intelligent tools that will aid code review stake-
holders to avoid design degradation in practice. Given this context, the goal
of this thesis is stated as follows.

Goal. Understand which contextual information – technical and social –
can be addressed to support the design-related reviews.

To achieve this goal, we mapped each research problem into two research
questions (RQs) as follows. Therefore, Research Problems 1 and 2 were mapped
onto two research questions, respectively.

RQ1: To what extent does modern code review impact the design degra-
dation evolution? – RQ1 aims at providing evidence on the impact of code
reviews on the evolution of design degradation. To this end, we conducted a
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mining-based investigation and reported the first study that characterizes how
the process of design degradation evolves within each review and across multi-
ple reviews. Moreover, we analyzed a comprehensive suite of metrics to enable
us to observe the influence of certain code review practices on combating or
even accelerating design degradation.

RQ2: To what extent social aspects contribute to distinguishing and
predicting design impactful changes in modern code review? – RQ2 aims at
investigating if code review stakeholders could benefit from approaches to
distinguish and predict design impactful changes with technical and/or social
aspects. To this end, we reported an investigation on the prediction of design
impactful changes in modern code review. We extracted and assessed 41
different metrics based on both social and technical aspects of the changes
involved in each revision of a code review. Based on different features set,
we evaluated the use of interpretable Machine Learning (ML) algorithms to
predict design impactful changes. Finally, we evaluated the predictive power of
the selected metrics and algorithms to assist developers to determine whether
a code change is impactful.

1.4
Thesis Contributions

This doctoral thesis expands the current knowledge on design degrada-
tion in modern code review during software evolution. Particularly, we provide
new insights on the social and technical facets of design degradation in modern
code review. We rely on both two large-scale quantitative studies (published)
based on mining software repositories. We summarize the main contributions
of this doctoral thesis as follows.

1.4.1
Empirical Characterization on How Modern Code Review Impact Software
Design Degradation

As aforementioned, though studies have been investigating the impact of
modern code review on design quality [11, 15, 21, 24, 40], we still know little
about the impact of modern code review and – their practices – on design
degradation overtime (Research Problem 1). More critically, it remains
unclear if and to what extent code review helps to combat design degradation.
It also remains unclear how the practices related to three code review factors,
namely Review Intensity, Review Participation, and Reviewing Time, usually
have a positive, neutral or negative effect on degradation.

For this purpose, we conducted an in-depth empirical study [90] in
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which we retrospectively investigate 14,971 code reviews from seven systems
of two large open source communities. We performed three major steps.
First, we characterized the impact of code reviews on the evolution of design
degradation. To this end, we explored how two degradation characteristics:
density and diversity of symptoms, evolved over time. We analyzed such
characteristics in the context of two major categories of degradation symptoms,
which are the fine-grained and coarse-grained smells [30]. Finally, we analyzed
the impact on design degradation caused by two code review factors. The first
factor was the presence of explicit intent of improving the design. The second
one was the presence of explicit design discussions along with the revisions of
a review.

Second, we investigated how degradation symptoms evolve along with
the revisions that occur along each review. To this end, we identified and
investigated four different evolution patterns for degradation characteristics
(i.e., density and diversity). Such investigation provided us with new insights
on the design decays or improvements along the reviewing process. Finally, we
explored the relationship of different code review practices with the evolution of
degradation characteristics. By exploring this relationship, we evidenced that
certain code review practices can be used as indicators of increasing design
degradation. Additionally, we reveal if according to prior studies [8, 11, 40, 50]
code reviews that are intensely scrutinized, with more team participation and
lasted for a long time, usually have a positive effect on design.

As a result, we observed that: (1) when developers have an explicit
concern with design along a code review, the effect on design degradation is
usually positive or invariant. However, the sole presence of design discussions is
not a decisive factor to avoid degradation; (2) during the revisions of each single
review, there is often a wide fluctuation of design degradation. This fluctuation
means that developers are both introducing and removing symptoms along
a single code review. However, at the end of the review, such fluctuations
often result in the amplification of design degradation, even in the context of
reviews with an explicit design concern; and (3) certain code review practices
increase the risk of design degradation, including long discussions and a high
rate of reviewers’ disagreement. The finding on long discussions shows that
those discussions are introducing more than removing degradation symptoms.

Contribution 1. We report the first study that characterizes how the
process of design degradation evolves within each review and across
multiple reviews. Moreover, we analyze a comprehensive suite of metrics
to enable us to observe the influence of certain code review practices on
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combating or even accelerating design degradation.

1.4.2
Exploring Social Aspects for Distinguishing and Predicting Design Im-
pactful Changes

As aforementioned, despite prior studies revealing the positive influence
of certain technical and social aspects in software engineering [93, 95, 100, 101],
their use to discriminate and predict design impactful changes is rarely
studied [73, 90]. As a consequence, we lack evidence on to what extent these
aspects can influence – either alone or simultaneously – the design degradation
during code reviews (Research Problem 2). This understanding can also
help to improve the current code review practices and develop a new generation
of tools for assisting developers on becoming early becoming aware about the
design impact during code reviews.

Aimed to investigate the use of social aspects to discriminate and predict
design impactful changes within modern code reviews, we conducted a large-
scale empirical study [70] in which we analyzed more than 50k code reviews
of seven real-world systems. We performed three major steps. First, we mined
a comprehensive set of 41 features able to capture both technical and social
aspects of the changes involved in each revision of a code review. Next, we
evaluated which metrics can distinguish between design impactful changes and
unimpactful ones. Second, we assessed the use of supervised ML techniques to
aid developers in automatically make their decisions.

Thus, we compare the performance of six interpretable ML algorithms:
Logistic Regression, Naive Bayes, SVM, Decision Tree, Random Forest, and
Gradient Boosting. We chose these algorithms as they provide a more straight-
forward way to explain the prediction classification output [78, 79]. After,
for each ML algorithms we explored how effective are the social and technical
features as a proxy to the design (un)impactful changes. To this end, we eval-
uated and compared the performance of both kinds of features. Consequently,
we applied the ML algorithm using three feature sets: a set using only social
features, a set using only technical ones, and a set using technical and social
features together. Finally, we explored what features are the best indicators of
impactful design changes across ML models by considering the different feature
sets.

As a result, we observed that: (1) both social and technical metrics are
able to distinguish design (un)impactful changes; (2) features related to the
code change, commit message, and file history are effective for differentiating
(un)impactful changes; (3) Random Forest and Gradient Boosting have shown
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to be the most accurate in predicting design impactful changes; (4) the use of
technical features results in more accurate predictions when compared to the
social ones. Moreover, such kinds of features can be used in combination with
social features without reducing the performance of the ML algorithms; and (5)
the technical features tend to be considered the best indicators across models
when compared with social features. However, social features that quantify the
developer’s experience are also considered important across models.

Contribution 2. We reported the effect of certain technical and social as-
pects on design degradation during code reviews. We empirically explored
and assessed the role of social aspects in distinguishing and predicting
design impactful changes in code review.

1.5
Research Publications

The empirical studies of this Doctoral thesis were reported in papers
already published. The first part of Table 1.1 lists all papers derived or strongly
related from this thesis in Rows 1 to 5. The second part of Table 1.1 lists, in
the remaining lines, some papers produced along with my doctoral research
in cooperation with other colleagues. In the Chapters 3 and 4 we presents the
studies, [90] and [70], respectively.

1.6
Study Replicability and Open Science

An essential and good practice of any scientific research is that studies
must be replicable, i.e., every manuscript must give detailed information on
how the study can be repeated or replicated. In this context, the open science
movement [157] aims to make all research artifacts available to the public,
thus, increasing transparency and reproducibility of the scientific process. To
this end, for each study that composes this doctoral thesis, we make the
replication package available on Zenodo (https://zenodo.org/), an online
repository hosted at CERN which allows sharing publications and supporting
data for replication. Table 1.2 lists where each replication package is hosted to
promote and open science.

We emphasize that for each replication package, we make available all
data collected, together with the definition of metrics, features, and statistical
tests, and scripts.

https://zenodo.org/
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Table 1.1: List of Research Publications
Paper Ref. Chap.
Unveiling Multiple Facets of Design Degradation in Modern Code Review. Uchôa,
A. In Proceedings of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE
2021), 2021, Athens, Greece, August 23–28, pages 1615–1619, 2021.

[158] 1

How Does Modern Code Review Impact Software Design Degradation? An In-depth
Empirical Study.Uchôa, A.; Barbosa, C.; Oizumi, W.; Blenilio, P.; Lima, R.; Garcia,
A.; and Bezerra, C. In Proceedings of the 36th International Conference on Software
Maintenance and Evolution (ICSME), 2020, Adelaide, Australia, Sept 27-Oct 3, pages
511–522, 2020.

[90] 3

Predicting Design Impactful Changes in Modern Code Review: A Large-Scale Em-
pirical Study. Uchôa, A.; Barbosa, C.; Coutinho, D.; Oizumi, W.; K. G. Assunção,
W.; Regina Vergilio, S.; Alves Pereira, J.; Oliveira, A.; and Garcia, A. In Proceedings
of the 18th International Conference on Mining Software Repositories (MSR 2021),
2021, Madrid, Spain, May 17–19, pages 1 – 12, 2021.

[70] 4

Behind the Intents: An In-depth Empirical Study on Software Refactoring in Modern
Code Review. Paixao, M.; Uchôa, A.; Bibiano, A. C.; Oliveira, D.; Garcia, A.;
Krinke, J.; and Arnovio, E. In Proceedings of the 17th International Conference on
Mining Software Repositories (MSR), 2020, Seoul, South Korea, May, pages 1 – 11,
2020. ACM

[60] N/A

Revealing the Social Aspects of Design Decay: A Retrospective Study of Pull Requests.
Barbosa, C.; Uchôa, A.; Falcao, F.; Coutinho, D.; Brito, H.; Amaral, G.; Garcia,
A.; Fonseca, B.; Ribeiro, M.; Soares, V.; and Sousa, L. In Proceedings of the 34th
Brazilian Symposium on Software Engineering (SBES), 2020, Natal, Brazil, Oct 19-
23, pages 364–373, 2020. ACM Press

[73] N/A

Do Critical Components Smell Bad? An Empirical Study with Component-based Soft-
ware Product Lines. Uchôa, A., Assunçao, W. KG, and Garcia, A. In Proceedings
of the 15th Brazilian Symposium on Software Components, Architectures, and Reuse
(SBCARS), 2021, Joinville, Brazil (Distinguished Paper Award – 2nd Place)

[166] N/A

How do Code Smell Co-occurrences Removal Impact Internal Quality Attributes?
A Developers’ Perspective. Martins, J.; Bezerra, C.; Uchôa, A.; and Garcia, A. In
Proceedings of the 35th Brazilian Symposium on Software Engineering (SBES), 2021,
Joinville, Brazil

[165] N/A

Visualizing the Maintainability of Feature Models in SPLs. Lima, L.; Uchôa, A.;
Bezerra, C.; Coutinho, E.; and Rocha, L. In Proceedings of the 8th Workshop on
Software Visualization, Evolution and Maintenance (VEM 2020), 2020, Natal, Brazil,
Oct 19, pages 1 – 8, 2020.

[164] N/A

On the Relation between Complexity, Explicitness, Effectiveness of Refactorings and
Non-Functional Concerns. Soares, V.; Oliveira, A.; Farah, P.; Bibiano, A.; Coutinho,
D.; Garcia, A.; Vergilio, S.; Schots, M.; Oliveira, D.; andUchôa, A. In Proceedings of
the 34th Brazilian Symposium on Software Engineering (SBES), 2020, Natal, Brazil,
Oct 19-23, pages 788–797, 2020. ACM Press

[163] N/A

Are Code Smell Co-occurrences Harmful to Internal Quality Attributes? A Mixed-
Method Study. Martins, J.; Uchôa, A.; Bezerra, C.; and Garcia, A. In Proceedings of
the 34th Brazilian Symposium on Software Engineering (SBES), 2020, Natal, Brazil,
Oct 19-23, pages 52–61, 2020. ACM Press

[69] N/A

REM4DSPL: A Requirements Engineering Method for Dynamic Software Product
Lines. Sousa, A.; Uchôa, A.; Fernandes, E.; Bezerra, C. I.; Monteiro, J. M.; and
Andrade, R. In Proceedings of the XVIII Brazilian Symposium on Software Quality
(SBQS), 2019, Fortaleza, Brazil, Oct 28-Nov 1, pages 129–138, 2019. ACM

[162] N/A

Do Research and Practice of Code Smell Identification Walk Together? A Social
Representations Analysis. de Mello, R.; Uchôa, A.; Oliveira, R.; Oizumi, W.; Souza,
J.; Mendes, K.; Oliveira, D.; Fonseca, B.; and Garcia, A. In Proceedings of the
13th International Symposium on Empirical Software Engineering and Measurement
(ESEM), 2019, Porto de Galinhas, Brazil, Sept 19-20., pages 1–6, 2019. IEEE Press

[74] N/A

Table 1.2: Replication Package Available per Chapter
Replication Package Chapter Host
How Does Modern Code Review Impact Software Design Degrada-
tion? An In-depth Empirical Study

2 Zenodo [58]

Predicting Design Impactful Changes in Modern Code Review: A
Large-Scale Empirical Study

3 Zenodo [59]

1.7
Thesis Outline

This introductory chapter portrayed an overview of this thesis. The re-
mainder of the thesis is structured as follows. Chapter 2 introduces basic
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concepts and related work aimed to support the understanding of this thesis.
Chapter 3 introduces our quantitative study focused on the characterization
of how modern code review impacts software design degradation. We present
and discuss the main study results as reported in our paper [90]. Chapter 4
introduces our second quantitative study on the role of social aspects in dis-
tinguishing and predicting (un)impactful design changes. We also present and
discuss the main study results as reported in our paper [70]. Finally,Chapter 5
concludes this doctoral thesis by summarizing the achieved research contribu-
tions, implications, delimitations, making final considerations, and pointing
out directions for future research.
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2
Background and Related Work

This chapter presents the background and related work of this thesis.
Section 2.1 outlines a brief history about how code reviews were applied in
different forms over time. Section 2.2 discusses the modern code review process
that is the focus of this doctoral thesis. Section 2.3 overviews software design
degradation and its symptoms. Section 2.4. Finally, Section 2.6 presents related
work that investigated code smells and other indicators of design degradation.

2.1
A Brief History of Code Reviews Evolution

The formal software inspection is a well-structured code review process
defined by Fagan [167]. Software inspection requires a set of procedures,
inducing synchronous discussion meetings, which are not necessarily executed
in other forms of code review. By conducting a software inspection the
developer can detect and remove defects before the software project is available.
As a well-structured code review process, a software inspection consists of
six steps: planning, overview, preparation, examination, rework, and follow-
up [167].

In the planning step, an inspection team is formed. Basically, each
team member has a specific role: author (the person who created the work
product being inspected); moderator (the leader of the inspection, that plans
the inspection and coordinates it); inspector (the ones who raise questions,
suggest problems, and criticize the document), and recorder (the person that
documents the defects that are found during the inspection). In the overview
step, the author describes the contexts of the software artifact that will be
inspected [167].

The following steps are those in which the review of the artifacts actually
begins. In the preparation step, each inspector examines the code artifact to
identify possible defects individually. Subsequently, in the examination step,
the reader scrutinizes the artifact, line-by-line, and points out the defects in
every part. Next, in the rework step, the author makes changes to the code
artifacts according to the action plan detailed in the examination step. The
changes by the author are checked to make sure everything is correct. Finally,

DBD
PUC-Rio - Certificação Digital Nº 1912727/CA



Chapter 2. Background and Related Work 33

in the follow-up step, the moderator verifies the fixes that were produced
during the rework step.

Despite the formal software inspection been quite successful in industry
and academia, mainly in the context of critical systems [173]. However, its
formality brings several disadvantages [168, 169]. For instance, the inspection
process as a whole is often very time consuming, since the inspection team
needs to be organized and prepared to be part of various meetings [168].
Another disadvantage is that the required formalism of the inspection activity
is not aligned with agile development methods [169].

Due to these and other disadvantages, new lightweight approaches were
introduced. For instance, the walkthroughs approach are informal code reviews
where an owner sets up a meeting and invites teammates to critique software
artifacts. The focus of the meeting is to find and resolve problems in the
artifacts. Another lightweight approach is the email-based code review in which
the code review starts when an owner broadcasts a review request, for a code
patch, through the project’s mailing lists. Then, developers who are interested
in the patch provide feedback by replying to the email [5, 7, 170].

In the next section, we introduce a lightweight tool-assisted code review
process, nowadays called modern code review. In this thesis, we explored and
investigated data obtained from this kind of code review. We focus on modern
code review, as it has been widely used in open and closed projects, from
different domains and in large and small organizations.

2.2
Modern Code Review

Nowadays, major companies, such as Facebook [26] and Microsoft [14],
utilize a more lightweight code review process on a daily basis. This modern
code review process is defined by Bacchelli & Bird [14] as an informal
(in contrast with the process defined by Fagan [167]) tool-assisted, and
asynchronous review technique, aimed at detecting and removing issues that
were introduced during development tasks. This process can be seen in
Figure 2.1 and it is described as follows.

Supported by tools, such as Gerrit 1 and GitHub, this modern code review
process is initiated by one developer referred to as the code author (or code
owner) that (1) modifies the original codebase and (2) submits a new code
change to be reviewed. These code changes are reviewed by other developers,
i.e., code reviewers, that will read and analyze them [66].

1https://www.gerritcodereview.com/

https://www.gerritcodereview.com/
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(1) Author make 
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Figure 2.1: Overview of Modern Code Review Process

The code reviewers (3) examine the code change to detect issues, such
as bugs, design problems, and style violations [13, 25]. After that, the code
reviewers (3) provide their review feedback, in the form of code review com-
ments, to the code owner. In turn, the code owner applies the requested fixes
and forwards a new version of the source code for analysis, which can be fol-
lowed by another code review analysis and its resulting comments. This cycle
is iterative and ends up when a decision is made about either the acceptance
or rejection of the integration of the change into the codebase [13, 66].

Throughout this work, we use review to indicate the entire process of a
single code review. The process starts to from the submission the a new code
change for review and ends with the approval on or rejection of integration
of the change into the codebase. In addition, we use revision to indicate each
iteration of this process during a single review.

2.3
Software Design Degradation and Its Symptoms

The design of a software results from a set of decisions made by the
developers along time [92, 102]. However, those decisions can (un)intentionally
degrade this design due to the introduction of poor code structures. Those
design problems can be seen as evidence of that degradation process, and are
also named degradation symptoms [10, 34, 136].

In this thesis, we take into account two categories of design degradation
symptoms: Fine-grained Smells (FG) and Coarse-grained Smells (CG) [30].
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FG smells are indicators of structural degradation in the scope of methods
and code blocks [30]. For instance, the Long Method is a FG smell that occurs
in methods that contain too many lines of code. On the other hand, CG smells
are symptoms that may indicate structural degradation related to object-
oriented principles, e.g., abstraction, encapsulation, and modularity [30, 34].
An example of CG smell is Insufficient Modularization [30]. This symptom
occurs in classes that are large and complex due to the accumulation of various
responsibilities. Such categories encapsulate a set of symptoms that are more
perceived and used by developers in practice to identify and refactor source
code locations degraded [22, 34, 36, 37].

To summarize, a degradation symptom is a characteristic of the code
that can indicate the existence of a deeper design problem. Moreover, design
degradation can be observed from an increase in the values of the density
or diversity of the design degradation symptoms. Throughout this work, we
calculate the density of design degradation symptoms by counting the number
of single degradation symptoms found in the source code. Conversely, diversity
is calculated as the number of different types of smells that can be found in
an instance of source code.

Table 2.1 lists the 27 symptoms types investigated in the thesis, where
the CG smells and FG smells are presented in the upper and bottom halves
of the table, respectively. In this thesis, all selected degradation symptoms
help us to measure different poor code structures. Additionally, all symptoms
were automatically detected using a state-of-the-practice tool called Designite-
Java [4]. This tool is successfully used in recent studies on design degradation
(e.g., [29, 73]), and prior work [114] indicated a precision of 96% and a recall
of 99%.

2.4
Technical and Social Aspects

Software development does not only consist of technical activities but also
of social activities that emerge from the collaboration among developers [187,
188, 189, 73]. Thus, social activities, such as developers communicating with
each other, the developer’s experience, and their collaboration networks are
central to software development. In this case, the investigation of social aspects
is crucial to understand current software practices, processes, and tools as well
as their impact [189].

In this context, we known that modern code review is a collaborative
task influenced by both technical and social aspects [48, 85]. Consequently,
both social and technical aspects can play a key role in how software design
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Table 2.1: Design Degradation Symptoms Investigated in this Thesis [30]
Symptom Types and Description
Imperative Abstraction: when an operation is turned into a class
Multifaceted Abstraction: an abstraction that has more than one responsibility assigned to it
Unutilized Abstraction: an abstraction that is left unused
Unnecessary Abstraction: an abstraction that is actually not needed in the system
Deficient Encapsulation: the accessibility of one or more members of an abstraction is more
permissive than actually required
Unexploited Encapsulation: when a client class that uses explicit type checks instead of exploiting
the variation in types already encapsulated within a hierarchy
Broken Modularization: when data and/or methods that should have been into a single abstraction
are spread across multiple abstractions
Insufficient Modularization: when an abstraction that has not been completely decomposed
Hub Like Modularization: when an abstraction has dependencies (both incoming and outgoing) with
a large number of other abstractions.
Cyclic Dependent Modularization: when two or more abstractions depend on each other directly or
indirectly
Rebellious Hierarchy: when a subtype that rejects the methods provided by its supertype(s)
Wide Hierarchy: when an inheritance hierarchy that is too wide
Deep Hierarchy: when an inheritance hierarchy that is excessively deep
Multipath Hierarchy: when a subtype inherits both directly as well as indirectly from a supertype
leading to unnecessary inheritance paths in the hierarchy.
Cyclic Hierarchy: when a supertype in a hierarchy that depends on any of its subtypes
Missing Hierarchy: when a design segment uses conditional logic instead of polymorphism.
Broken Hierarchy: a supertype and its subtype conceptually do not share an “is a“ relationship

Abstract Function Call From Constructor: a constructor that calls an abstract method
Complex Conditional: a conditional statement that is complex
Complex Method: a method that has high cyclomatic complexity
Empty Catch Block: a catch block of an exception that is empty
Long Identifier: an identifier that is excessively long
Long Method: a method that is too long to understand
Long Parameter List: a method that accepts a long list of parameters
Long Statement: a statement that is excessively long
Magic Number: when an unexplained number is used in an expression
Missing Default: a switch statement that does not contain a default case

degrades during the code review process. For example, the quality of each code
change can be influenced by the developers working on it and by the change
process itself. Thus, in this thesis, we consider aspects associated with the
source code being developed, as technical aspects [6]. An example of a technical
aspect is the complexity of the change that needs to be reviewed. Conversely, we
consider a social aspects as dimensions that characterize properties related to
communication among developers on the environment that they are developing
code, the developer’s experience, and their collaboration networks [6, 186]. An
example of a social aspect is the experience of developers, including the change
author and reviewers.

In this thesis, we explore the different facets of social and technical as-
pects by computing metrics that can be directly related to different dimensions
of each aspect. Such metrics are widely used in software engineering litera-
ture [5, 7, 32, 49, 82, 94, 96, 97, 99, 98, 111, 112, 136]. Tables 2.2 and 2.3
overview the different metrics that we use to measure the social and techni-
cal aspects, respectively. Each of these tables is structured as follows. The first
column lists the different dimensions of each aspect. The second column names
the metrics that we use to measure different properties of a dimension. The
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last two columns describe each metric and the rationale for using this metric,
respectively.

Regarding the social aspects described in Table 2.2, we split them into
three dimensions: (i) developer’s experience comprises the metrics related to
the previous experience of the code change owner [7, 98, 99]; (ii) discussion
activity comprise the metrics of communication between developers and re-
viewers [32, 136]; and (iii) collaboration networks consists of metrics of social
networks [97, 98, 111]. Regarding the technical aspects (Table 2.3), we split
them into five dimensions: (i) size consists of metrics related to source in their
smallest granularity [5]; (ii) diffusion comprehends the features about changes
distributed on two or more files (e.g., number of changed files) [94, 99]; (iii)
complexity comprehends the metrics on the complexity of a change [111]; (iv)
file history is composed of metrics related to the history of the files. For in-
stance, the number of prior changes to a file can be a good indicator to detect
degraded files [49, 94, 96]; and (v) textual consists of features that capture
textual characteristics of the commit messages [82, 112].

DBD
PUC-Rio - Certificação Digital Nº 1912727/CA



Chapter2.
Background

and
Related

W
ork

38

Table 2.2: Social Aspects Investigated in this Thesis Grouped into Different Dimensions and Metrics
Dimension Metric name Description Rationale
refers to metrics which are based on the experience of a code change owner

Developer’s
Experience

change num (NC) Number of prior code changes submitted by the owner of this experience
code change

Developer experience may be an essential piece of information for
predicting software quality. Additionally, patch writer experience
significantly impacts code review quality.recent change num (NRC) Number of prior code changes submitted by the owner of this code

change in recent 120 days
dir change num (NDC) Number of prior code changes submitted by the owner of this code

change, that contain at least one directory affected by this code change
review num (NR) Number of prior code changes the owner of this code change is assigned

to inspect
If a code change owner has reviewed many changes submitted by other
developers, he/she would be more familiar with coding standards and
operations of Gerrit system. Thus, the review num help to quantify for
the owner’s experience

merged ratio (MR) Merged rate of prior code changes submitted by the owner of this code
change

Acceptance rate prior to current pull request as a feature to predict pull
request outcomes (i.e., merged or abandoned)

recent merged ratio (RMR) Number of merged code changes submitted by the owner of this code
change in recent 120 days prior to this code change and normalized over
recent change num.

Measuring recent performance of the owner prior to current code change.

dir merged ratio (DMR) Merged rate of prior code changes submitted by the owner of this code
change, that contain at least one directory affected by this code change

Quantifying the owner’s familiarity with the directories affected by this
code change.

refers to metrics that capture code review activities in the patches

Discussion
Activity

inline comments num (NIC) Number of inline comments made by reviewers on the code change
submitted by the owner

Classes having degraded symptoms can create more discussion among
the reviewers on how to refactor them.

words inline comments num
(NWIC)

Sum of the all words of each inline comment. Here we applied the pre-
processing in the text removing contractions, stop words, punctuation,
and replacing numbers

Discussions with a high number of comments around a code change
would find possible design symptoms, improving or maintaining the
quality.

percentage words in inline com-
ments (PWIC)

Sum of the all words of each inline comment weighted by the number of
inline comments. Here we applied the preprocessing in the text removing
contractions, stop words, punctuation, and replacing number.

Discussions with a high weighted number of comments around a code
change may lead to design degradation.

general comments num (NGC) Number of general comments made by reviewers on the code change
submitted by the owner.

words general comments num
(NWGC)

Sum of the all words of each general comment. Here we applied the pre-
processing in the text removing contractions, stop words, punctuation,
and replacing numbers

Discussions with a high number of words are related to more complex
changes, that may lead to design degradation.

percentage words in general com-
ments (PWGC)

Sum of the all words of each general comment weighted by the number
of general comments. Here we applied the preprocessing in the text
removing contractions, stop words, punctuation, and replacing number.

Discussions with a high weighted number of words are related to more
complex changes, that may lead to design degradation.

discussion length (DL) Number of general comments and inline comments written by reviewers Reviewing proposed changes with a long discussion would find more
degradation symptoms and provide a better design solution.

refers to metrics that are used to measure this code change owner’s network degree of activity in collaboration process of the corresponding project prior to this code change

Collaboration
networks

degree centrality (SD) The degree centrality for a node v is the fraction of nodes it is connected
to

Collaboration factors of the code change owners (i.e., their level of
participation within the project) can influence code review outcomes.

closeness centrality (SCLOS) The inverse of the sum of all distances to all other nodes
betweenness centrality (SB) The sum of the fraction of all-pairs shortest paths that pass through v
eigenvector centrality (SE) The centrality for a node based on the centrality of its neighbors
clustering coefficient (SCLUST) The geometric average of the subgraph edge weights.
social k coreness (SKC) Maximal subgraph that contains nodes of degree k or more.
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Table 2.3: Technical Aspects Investigated in this Thesis Grouped into Different Dimensions and Metrics
Dimension Metric name Description Rationale
refers to metrics that are based on the source code in the revisions

lines added num (NLA) Number of inserted lines in this code change
lines deleted num (NLD) Number of deleted lines in this code change
churm num (CHURN) Number of lines added to and removed in this code change
file added num (NFA) Number of added files in this code change

Size

file deleted num (NFD) Number of deleted files in this code change

Large patches may need more effort to review

changed file num (NCF) Number of changed files in this code change
directory num (NMD) Number of modified directories in this code change
modify entropy (ME) Distribution of modified code across files in this code change
language num (NLANG) Number of programming languages used in this code change

Diffusion

file type num (NFT) Number of file types in this code change

Patches, where their changes scatter across a large number of files or
directories, may need more effort to review. Finding reviewers who
have knowledge of such changes is difficult as well. Therefore, it is
more likely that the patch will suffer from poor reviewer involvement.

segs added num (NSA) Number of added code segments in this code change
segs deleted num (NSD) Number of deleted code segments in this code changeComplexity
segs updated num (NSU) Number of updated code segments in this code change

A code change with more code segments modified is likely more complex
and requires reviewer more effort and time to comprehend it.

refers to metrics that are based on file modification history recorded by the Gerrit systems
changes files modified (FM) Number of times files in this code change were modified before The number of previous changes to a file is a good indicator to detect

degraded files.File history file developer num (FD) Number of developers who changed files in this code change Files that are previously touched by more developers are more likely to
introduce degradation symptoms.

refers to metrics that capture textual characteristics of the commit message
msg length (ML) Number of words in description of this code change Description length of a patch is related to its likelihood of receiving poor

comments.
has bug (BUG) Whether description of this code change contains word “bug” and more

keywords based on previous work [1,2]
has feature (FEAT) Whether description of this code change contains word “feature” [1,2]
has improve (IMPR) Whether description of this code change contains word “improve” and

more keywords based on previous work [1,2]
has document (DOC) Whether description of this code change contains word “document” and

more keywords based on previous work [1,2]

Textual

has refactor (REFC) Whether description of this code change contains word “refactor” and
more keywords based on previous work [3]

Commit message containing more information about a code change may
help reviewers comprehend the change more easily.
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2.5
Supervised Machine Learning Algorithms

Machine learning (ML) is a sub-area of artificial intelligence (AI) that
encapsulate “a set of methods that allow computers to learn from the data
to make and improve predictions” [177]. The machine learning area has
several types of algorithms. These algorithms are typically classified into four
types: supervised learning, unsupervised learning, reinforcement learning, and
evolutionary learning [177]. The most common types are supervised learning
and unsupervised learning [177]. The main difference between these two types
is the existence of prior knowledge concerning the output values (the ground
truth). Thus, in supervised learning, the main goal is to learn a specific
task, given a sample of data and desired output. Conversely, in unsupervised
learning, we do not have a labeled output, thus, the main goal is to infer the
output without an already known sample of data and ground truth [177].

In the context of software engineering, unsupervised learning is usually
used when it is not possible to label the instances to be classified. However,
most problems in software engineering work with instances that can be labeled,
so it becomes more feasible to use supervised learning (e.g., [49, 77, 93]). Thus,
in this thesis, we used different supervised ML algorithms to explore the role
of social aspects in predicting design impactful changes (see Chapter 4 for
more details). We emphasize that these algorithms are all interpretable, which
allows us to understand the rationale behind the classification. We describe
the six different (binary classification) supervised ML algorithms that we have
used as follows.

Logistic Regression [178]: Logistic Regression is a ML algorithm
similar to linear regression. This ML algorithm is centered on combining input
values using coefficient values (i.e., weights) to predict an outcome value.
Differently from linear regression, the outcome value being modeled ranges
from 0 to 1. Naive Bayes [179]: The Naive Bayes (Gaussian) describe a set of
steps to apply Bayes’ theorem to classification problems. These algorithms
use training data to compute the probability of each outcome based on
the information extracted from feature values. Its main idea describes the
probability of an event based on prior knowledge of conditions that might be
related to this event.

Support Vector Machines [180]: Support Vector Machines computes is
an ML algorithm that searches for the best hyper-plane to separate the training
instances into their respective classes. To make this classification, SVM creates
classification models that are a representation of examples as points in space.
These points are mapped in such a way that the examples in each category
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are divided by a clear space that is as broad as possible. Each new instance is
mapped in the same space and predicted as belonging to a category based on
which side of space they are placed.

Decision Trees [183]: Decision Tree algorithms yield hierarchical models
composed of decision nodes and leaves. Essentially, the resulting models
represent a partition of the feature space. Basically, from the root of the
tree, the value of a certain independent variable is evaluated and it is decided
whether the next node will be the one on the right or the left. This process is
repeated until you reach a leaf node that indicates the class that will be given
as the result.

Random Forest [181, 182]: Random Forest is an ensemble of decision
tree predictors. In other words, such an algorithm uses many decision trees
with random subsets of the training data. The Random Forest adds extra
randomness to the model when during the tree’s creation. Instead of looking
for the best feature when partitioning nodes, it looks for the best feature in a
random subset of features. This process creates great diversity, which generally
leads to the generation of better models, besides that this diversity also reduces
the overfitting effect.

Gradient Boosting [184, 129]: The Gradient Boosting is an ML algo-
rithm that works in a forward stage-wise fashion; it allows for the optimization
of arbitrary differentiable loss functions. In each stage, the regression trees are
fit on the negative gradient of the binomial or multinomial deviance loss func-
tion. Binary classification is a special case where only a single regression tree
is induced.

2.6
Related Work

We emphasize that the next sections are a cut of the related work
described in Chapters 3 and 4. The related work described here is the same set
of studies presented in Chapter 1, but grouped into three different viewpoints.
Furthermore, the differences between our work in relation to the previous ones
are described in Chapters 3 and 4. Section 2.6.1 presents studies that explore
the perspective of developers about design degradation. Section 2.6.2 that have
investigated the impact of code review on design quality. Finally, Section 2.6.3
presents studies about the effect of technical and social aspects in code reviews.
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2.6.1
Empirical Studies on Design Degradation

There are multiple studies that analyze the perspective of developers
about design degradation [28, 34, 37, 69, 91]. Others study the use of diversity
and density of symptoms (i.e., smells) as characteristics of design degrada-
tion [29, 67, 68]. Sousa et al. [34] identified five categories of symptoms upon
which developers often rely to identify design problems. Similar to other stud-
ies [37, 91], they observed that developers tend to combine multiple symptoms,
by considering dimensions such as their density, diversity, and granularity to
decide if there is design degradation. Oizumi et al. [29] investigated if degrada-
tion symptoms appear with higher density and diversity in classes refactored
by developers. The authors observed that despite not being removed by refac-
torings, some types of symptoms may be indeed strong indicators of design
problems. Ahmed et al. [67] analyzed how open source projects get worse
in terms of design degradation. The authors identified strong evidence that
the density of design problems builds up over time. Mannan et al. [68] have
compared the occurrences of degradation symptoms in Android and desktop
systems in terms of their variety, density, and distribution.

2.6.2
Studies on the Impact of Modern Code Review on Design Quality

Prior studies have investigated the impact of code review on design
quality [11, 15, 21, 24, 40]. Morales et al. [24] studied the impact of code review
coverage (proportion of changes code reviewed) and reviewer involvement on
smells. They observed that high coverage and review participation can reduce
the occurrence of smells. Later, Mcintosh et al. [11] suggested that coverage,
reviewer’s participation, and expertise play high impacts on bug introduction.
Pascarella et al. [40] observed that active and participative code reviews have
a significant influence on the reduction of code smell severity. Zanaty et al. [21]
observed that design-related discussion during code review is still rare. Later,
Paixão et al. [15] studied the code review impact on the structural high-level
design. They observed that only 31% of the reviews with design discussions
have a noticeable impact on the structural high-level design.

2.6.3
Studies on Technical and Social Aspects in Modern Code Review

There are various studies that analyze the effect of technical and social
aspects in code reviews [73, 80, 81, 82, 85, 89]. Bosu et al. [85] studied the
impact of interpersonal relations on the patch review. They found that the
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code author is one of the important factors for reviewers to decide to review
a patch or not. In addition, Ruangwan et al. [81] investigated how many
reviewers did not respond to a review invitation. The authors found that the
more reviewers were invited to a patch, the more likely it was to receive a
response. Thongtanunam et al. [82] investigated patches that do not attract
reviewers, not discussed, and receive slow initial feedback. They found that
the length of the patch description plays an important role in the likelihood
of receiving poor reviewer participation or discussion. Ebert et al. [89] found
that missing rationale and lack of familiarity with the code are the major
reasons for confusion in code review. Recently, Barbosa et al. [73] observed
that communication dynamics among developers and discussion content decay
contribute to combating or amplifying design decay.

2.7
Summary of Chapter 2

This chapter introduced a number of key concepts and related work to
support the understanding of this thesis. This doctoral research goes a step
further than related work studies, by explicitly investigating the relationships
among the aforementioned perspectives. More specifically, we aim at under-
standing the social and technical facets of design degradation in modern code
review and how social and technical aspects can influence – either alone or
simultaneously – how to design degradation occurs.

The next chapter provides the first investigation to better understanding
the modern code review impact software design degradation by considering
multiples factors. First, in Section 2.1 we introduced the code review process,
providing a brief overview of its history and discussing how it is applied in
modern software development. Second, in Section 2.3 we also introduce the
design degradation process, and described how we can detect it by using some
of its symptoms. Finally, in Section 2.6, we discuss previous works related to
this thesis.
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3
How Does Modern Code Review Impact Software Design
Degradation? An In-depth Empirical Study

An earlier version of the work in this chapter appears in
the Proceedings of the 36th International Conference on Software

Maintenance and Evolution (ICSME) [90].

As mentioned in Section 1.2, previous studies [11, 15, 21, 24, 40] have
investigated the impact of modern code reviews by addressing only the relation
between modern code review – and their practices – and design degradation in
a constrained manner. For instance, considering only single events (related to
design degradation), such as the introduction of a single design problem [34,
37], or simply analyzing the degradation frequency [28, 29, 41, 40]. Thus,
we conducted a study, by addressing the limitations of previous studies and
advancing in knowledge about the impact of modern code reviews.

More specifically, in this chapter, the paper How Does Modern Code Re-
view Impact Software Design Degradation? An In-depth Empirical Study will
be presented in its entirely. The paper was published in the 36th International
Conference on Software Maintenance and Evolution (ICSME) [90]. This study
comprehends the first contribution of this Doctoral research: empirical char-
acterization on how modern code Review impact software design degradation
(see Section 1.4.1).

3.1
Introduction

Modern code review is a lightweight, informal, asynchronous, and tool-
assisted technique aimed at detecting and removing issues that were introduced
during development tasks [14]. Both industrial [16] and open-source [17]
projects have been adopting modern code review on a daily basis as a means
to promote the quality of their systems [14]. Along code reviews, developers
inspect and discuss the quality of each other’s code changes before accepting
them.

Modern code review may play a key role at both improving the design
quality of a software as well as its maintainability [11, 22, 21]. Prior studies [14,
24, 40] suggest that certain code review practices, such as the lack of review
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participation, may increase design degradation. Other studies have shown that,
along code review, developers often argue about software maintainability and
suggest design improvements to the code owners [13, 21, 23].

Code review may or may not be explicitly focused on design quality [15,
21, 60]. Unfortunately, even with explicit design discussions, changes performed
by developers along reviews can lead to design degradation. Design degradation
is the process where design decisions progressively worsen the structural
quality of a system, thereby also hampering external quality attributes such
as maintainability. If not properly avoided, identified and combated, design
degradation has severe consequences to the software health and also possibly
contributing to its (dis)continuation in the future [18, 19, 20, 36, 34, 46].

Existing studies tend to analyze design degradation considering only sin-
gle events, such as the introduction of a single design problem [34, 37], or
simply analyzing the degradation frequency [28, 29, 41, 40]. Nevertheless, un-
derstanding how the design degradation evolves over time – across reviews and
within reviews – is of paramount importance. Otherwise, we are misinforming
the research and practice of modern code review. Since the code review also
aims to improve design quality, one could expect that, over time, the reviews
will gradually reduce multiple degradation symptoms.

To the best of our knowledge, there is no study that performs an in-depth
investigation of the impact of modern code review – and its practices – on the
design degradation evolution. Hence, it remains unclear whether and to what
extent code review helps to combat design degradation. Moreover, there is little
knowledge about the impact of developers’ design discussions on degradation.
Additionally, we do not know which practices may strengthen the combat or
the acceleration of design degradation.

This paper addresses the aforementioned limitations through an in-depth
empirical study that characterizes the impact of modern code review and its
practices on design degradation evolution. To this end, we retrospectively
investigate 14,971 code reviews from seven software systems pertaining to
two large open source communities. We analyze the characteristics of design
degradation across reviews and within reviews. Moreover, we assess how
reviews with design discussion tend to impact design degradation. Finally, we
analyze a comprehensive suite of metrics to support our observations regarding
the relationship between certain code review practices and the combat (or
amplification) of design degradation.

Our contributions include: (i) findings on the characterization of the code
review impact on design degradation, (ii) findings on how design degradation
evolves along with code reviews, and (iii) statistical analyses concerning the
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relationship between certain code review practices and design degradation. We
summarize our study findings as follows:

1. When developers have an explicit concern with design, the effect on de-
sign degradation is usually positive or invariant. However, the sole pres-
ence of design discussions is not a decisive factor to avoid degradation;

2. During the revisions of each single review, there is often a wide fluctu-
ation of design degradation. This fluctuation means that developers are
both introducing and removing symptoms along a single code review.
However, at the end of the review, such fluctuations often result in the
amplification of design degradation, even in the context of reviews with
an explicit design concern;

3. Certain code review practices increase the risk of design degradation,
including long discussions and a high rate of reviewers’ disagreement. The
finding on long discussions shows that long discussions are introducing
more than removing degradation symptoms.

3.2
Background and Related Work

3.2.1
Design Degradation

Design degradation is a phenomenon in which developers progressively
introduce design problems in a system [44]. The degradation is caused by design
decisions that negatively impact quality attributes such as maintainability and
extensibility [46, 34]. An example of degradation is when a class is overloaded
with multiple unrelated functionalities, making it difficult to use and increasing
the chances of causing ripple effects on other classes. Given the potential
harmfulness of design degradation, developers need to identify and refactor
source code locations impacted by design degradation.

Empirical studies on design degradation. There are multiple studies
about design degradation [28, 29, 34, 36, 37, 39, 67, 68, 69]. Oizumi et al. [29],
e.g., investigated if degradation symptoms appear with higher density and
diversity in classes refactored by developers. The authors observed that despite
not being removed by refactorings, some types of symptoms might be indeed
strong indicators of design problems. Ahmed et al. [67] analyzed how open
source projects get worse in terms of design degradation. The authors identified
strong evidence that the density of design problems build up over time.
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None of the aforementioned studies have analyzed how code changes
performed by developers during code reviews impact on design degradation.
In this work, we fill this gap in the literature by investigating two categories of
symptoms, which are fine-grained (FG) and coarse-grained (CG) smells [30].
FG smells are indicators of structural degradation in the scope of methods
and code blocks [30]. For instance, the Long Method is a FG smell that occurs
in methods that contain too many lines of code. This smell usually indicates
modifiability and comprehensibility problems. CG smells are symptoms that
may indicate structural degradation related to object-oriented principles such
as abstraction, encapsulation, modularity, and hierarchy [34, 30]. An example
of CG smell is Insufficient Modularization [30]. This symptom occurs in classes
that are large and complex due to the accumulation of responsibilities.

3.2.2
Modern Code review

Modern code review is typically a lightweight, informal, asynchronous,
and tool-assisted practice aimed at detecting and removing issues that were
introduced during development tasks [14]. Major companies, such as Face-
book [26] and Microsoft [14] use modern code review on a daily basis. Sup-
ported by tools such as Gerrit, the modern code review process is initiated by
one developer referred to as the code owner that modifies the original code-
base and submits a new code change to be reviewed. These code changes are
reviewed by other developers, i.e., code reviewers, that will inspect it [66]. The
code reviewers inspect the code change to detect issues such as bugs, design
problems, and violations of style [13, 25].

After that, the code reviewers provide their review feedback, in the form
of code review comments, to the code owner. In turn, the code owner applies
fixes and forwards the new version of the source code for inspection, which can
be followed by another code review comment. This cycle is iterative and ends
up with either the acceptance or rejection of the integration of the change into
the codebase [13, 66].

In our study, we use review to indicate the entire process of a single code
review, from submitting a new code change for review to approving or rejecting
the integration of the change into the codebase. In addition, we use revision
to indicate each iteration of this process during a single review.

Empirical studies on the impact of modern code review. Multiple
studies have investigated the impact of code review on software quality [15, 21,
24, 32, 40]. Morales et al. [24] investigated the relation between code review
and code smells. The authors observed that software components with limited
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review coverage and participation are more prone to the occurrence of code
smells compared to components whose review process is more active. Pascarella
et. al [40] investigated if and how code review influences the severity of six
types of code smells in seven Java open-source projects. The authors observed
that active and participative code reviews have a significant influence on the
reduction of code smell severity. Another study [15] has investigated the impact
of code review on the structural high-level design. The authors observed that
only 31% of the reviews with design discussions have a noticeable impact on
the structural high-level design. In this work, we investigate the same set of
systems analyzed by them. Nevertheless, we focused on assessing the impact of
modern code reviews on design degradation. In addition, we conducted multiple
new analysis, as summarized below.

In a nutshell, our work differs from the existing ones in the following
points: (1) we investigated how the occurrence of design discussions during a
review may affect the evolution of design degradation; (2) while most studies
are focused in analyzing the degradation as single events, we investigated the
manifestation and evolution of the design degradation process (increase and
reduction) under different aspects, which are across reviews and along with
revisions of each review; and (3) we used a multiple logistic regression model
to evaluate the impact of code review practices on design degradation.

3.3
Study Settings

Section 4.3.1 presents both goal and research questions. Finally, Sec-
tion 3.3.2 shows the study steps and procedures.

3.3.1
Goal and Research Questions

In this study, our goal is to characterize the impact of code review
practices on the evolution of design degradation. To achieve this goal, we
analyzed code reviews that were extracted from seven large open-source
systems. Our study was based on three research questions (RQs) as follows.

RQ1: To what extent do modern code reviews impact design degradation?
RQ1 aims at providing evidence on the impact of code reviews on the evolution
of design degradation. To achieve this goal, we focus on exploring the evolution
of two degradation characteristics: density and diversity of symptoms. We
analyze such characteristics in the context of two categories of degradation
symptoms, which are the fine-grained and coarse-grained smells. Finally, we
analyze the impact on design degradation caused by two code review factors.

DBD
PUC-Rio - Certificação Digital Nº 1912727/CA



Chapter 3. How Does Modern Code Review Impact Software Design
Degradation? An In-depth Empirical Study 49

The first factor is the presence of explicit intent of improving the design. The
second one is the presence of explicit design discussions along with the revisions
of a review. We provide more details about such factors in Section 3.3.2.

RQ2: How does design degradation evolve along with each code review?
RQ2 aims at investigating how degradation characteristics evolve along with
the revisions that occur along with each code review. To answer RQ2, we
identified and investigated four different evolution patterns for degradation
characteristics (i.e., density and diversity). Such investigation provides us
with new insights about the evolution of design degradation throughout the
reviewing process.

RQ3: How do code review practices influence design degradation? RQ3

aims at exploring in depth the relationship of different code review practices
with the evolution of degradation characteristics. A correlation between these
two variables may evidence that certain code review practices can be used as
indicators of increased design degradation. Also, by answering RQ3, we will be
able to reveal whether according to previous studies [8, 11, 40, 50] code reviews
that are intensely scrutinized, with more team participation, and reviewed for
a longer time, usually has a positive effect on design degradation.

3.3.2
Study Steps and Procedures

We describe each study step and procedures as follows.
Step 1: Select software systems that adopt modern code review.

We selected systems provided by the Code Review Open Platform (CROP) [3],
an open-source dataset that links code review data with their respective code
changes. CROP currently provides data for 11 systems, extracted from two
large open source communities: Eclipse and Couchbase. All systems in CROP
employ Gerrit as their code review tool. Hence, by using CROP, we have access
to a rich dataset of source code changes that goes beyond other platforms, such
as Github. We selected only Java systems included in the CROP dataset due
to the limitations of the DesignateJava tool [4] (see Step 2). We considered
only merged reviews, since they represent changes that were integrated into
the systems. In addition, we discarded reviews that did not change Java files.
Table 4.1 provides details about each selected system, where the Eclipse and
Couchbase systems are presented in the upper and bottom half of the table,
respectively. We also detail the number of merged reviews and revisions in each
system, followed by the time-span of our investigation.

Step 2: Detect degradation symptoms during code review. We
used the DesigniteJava tool [4] to detect a total of 27 degradation symptoms
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Table 3.1: Software Systems Investigated in this Study
Systems # of Reviews # of Revisions Time span
jgit 3,736 10,718 10/09 to 11/17
egit 3,607 9,937 9/09 to 11/17
platform.ui 3,072 10,282 20/13 to 11/17
linuxtools 2,947 9,149 6/12 to 11/17
java-client 642 2,064 11/11 to 11/17
jvm-core 629 1,851 4/14 to 11/17
spymemcached 338 1,010 5/10 to 7/17

types: 17 coarse-grained (CG) smells, and 10 fine-grained (FG) smells. Hence,
for each system under study, we identified these degradation symptoms by
considering each review and submitted revisions that have undergone the code
review process. For each submitted revision, we used CROP to access the
versions of the system before and after the revision took place. Hence, we
guaranteed that the introduced degradation symptoms between each version
were solely introduced by the code changes in the revisions. Table 4.2 lists the
27 symptoms types investigated in our study, where the CG and FG smells are
presented in the upper and bottom half of the table, respectively. We provide
all descriptions, detection strategies, and thresholds for each type of symptom
in our replication package [58].

Table 3.2: Degradation Symptoms Investigated in this Study
Coarse-grained Smells
Imperative Abstraction, Multifaceted Abstraction, Unutilized Abstraction,
Unnecessary Abstraction, Deficient Encapsulation, Unexploited Encapsulation,
Broken Modularization, Insufficient Modularization, Hub Like Modularization,
Cyclic Dependent Modularization, Rebellious Hierarchy, Wide Hierarchy,
Deep Hierarchy, Multipath Hierarchy, Cyclic Hierarchy, Missing Hierarchy,
Broken Hierarchy.
Fine-grained Smells
Abstract Function Call From Constructor, Complex Conditional, Complex Method,
Empty Catch Block, Long Identifier, Long Method, Long Parameter List,
Long Statement, Magic Number, Missing Default.

Step 3: Compute degradation characteristics for each symptom
category during code review. We rely on an existing grounded theory [34]
that explains that developers tend to consider multiple degradation character-
istics. We take into account two characteristics, namely density and diversity,
as metrics to measure the level of design degradation. For each selected system,
we computed these characteristics in the context of each symptom category
(CG and FG smells), for all the collected reviews and revisions. For each re-
view and revision, we also used CROP to access the versions of the system
before and after each review and revision. Density was computed for each ver-
sion of the system, before and after each revision, as the sum of the number
of symptom instances in the set of source code files. Similarly, we computed
the diversity as a sum of the number of different symptom types in the set of
source code files.
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The computation of density and diversity before and after revisions,
allowed us to generate four different indicators of design degradation for each
revision, where each indicator represents the differences in density and diversity
of FG and CG smells. In summary, when the degradation characteristic, either
density or diversity, after the revision, is larger than the characteristic before
the revision there is an increase in the degradation as a result of the revision.
Similarly, when the degradation characteristic after the revision is smaller than
the characteristic before, there is a reduction of the degradation as a result of
the revision. In total, we have computed the four indicators for 14,971 code
reviews and 45,011 revisions.

Step 4: Identify design degradation evolution patterns across re-
views.We identified the design degradation evolution across reviews by adapt-
ing a recent state-of-the-art classification provided by a previous work [15]. To
find evolution patterns, we considered only reviews, identified, and filtered
in Step 3, which presented an increase or decrease of degradation. For this
purpose, we considered reviews that: (i) have more than one revision, and (2)
present symptoms of degradation. We firstly identified the last merged revision
of each review, which represents the degradation evolution that was, in fact,
incorporated into the system. After that, we compared the degradation charac-
teristics of the last merged revision with all the other previous revisions of each
code review. This procedure enabled us to investigate how design degradation
evolves across the revisions of each review.

Step 5: Calculate code review activity metrics. Table 3.3 shows
the 16 metrics that we used to measure the code review activity. The first part
of Table 3.3 describes the control variables that we computed to avoid some
factors that may affect our outcome if not adequately controlled. As control
variables, we used Product and Process metrics, which have been shown by
previous research to be correlated with design degradation [63, 64]. The second
part of Table 3.3 describes the metrics that we considered as independent
variables to measure the code review activity. We have grouped each metric
in three dimensions. Review Intensity measures the scrutiny that was applied
during the code review process. Review Participation measures how much the
development team invests in the code review process. Finally, Reviewing Time
measures the duration of a code review. We emphasize that these metrics are
extensively used by previous work (e.g., [8, 11, 24]) to measure the code review
activity. Moreover, all three dimensions investigated in our study suggest
practices that may be favorable or not to combat design degradation.
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Table 3.3: Independent and Control Variables Used in our Study. The Rationale of each Metric is Described in our Replication Package [58]
Type Metric Description

Control variables

Product

DiffComplexity (DC) The difference of the sum of the Weighted Method per Class metric computed on
the version before and after review of all classes being subject of review.

DiffSize (DS) The difference of the sum of the Lines of Code metric computed on version before
and after review of all classes being subject of review.

Patch Size (PS) Total number of files being subject of review.
Process Patch Churn (PC) Sum of the lines added and removed in all the classes being subject of review.

Independent variables

Review
Intensity

Number of Revisions (NR) The number of revisions for a patch prior to its integration.
Discussion Length (DL) Number of general comments and inline comments written by reviewers.
Proportion of Revisions with-
out Feedback (PRWF)

The proportion of iterations without discussions started by a reviewer, neither
posting a message nor a score.

Churn during Review
(CDCR)

Number of lines that were added and deleted between revisions.

Review
Participation

Number of Reviewers (NR) Number of developers who participate in a code review, i.e., posting a general
comment, or inline comment, and assigning a review score.

Number of Authors (NA) Number of developers who upload a revision for proposed changes. Changes
revised by many authors may introduce more degradation into the system [49, 51].

Number of Non-Author Vot-
ers (NNAV)

Number of developers who assign a review score, excluding the patch author.

Proportion of Review Dis-
agreement (PRD)

A proportion of reviewers that vote for a disagreement to accept the patch, i.e.,
assigning a negative review score.

Reviewing
Time

Review Length (RL) Time in days from the first patch submission to the reviewers’ acceptance for
integration [6, 42].

Response Delay (RD) Time in days from the first patch submission to the posting of the first reviewer
message [6].

Average Review Rate (ARR) Average review rate (KLOC/Hour) for each revision.
Typical Review Window
(TRW)

The length of time between the creation of a review and its final approval for
integration, normalized by the size of the change.
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Step 6: Assess the influence of multiple code review practices
on software degradation. To assess the influence of the code review activity
metrics in design degradation, we created a statistical model using the multiple
logistic regression technique. In this model, we used all code review metrics
presented in Table 3.3 as predictors of the likelihood of a code review to impact
design degradation; i.e., whether each code review has either a decreasing or
increasing impact in the degradation characteristics. We used multiple logistic
regression because we are dealing with multiple possible predictors, and we
have a binary variable as a response. To avoid the effect of multicollinearity on
our data, we remove the code review metrics which have a pair-wise correlation
coefficient above 0.7 [1].

Moreover, we used odds ratios to report the effect of the metrics over
the possibility of a review impacting design degradation. Odds ratios are the
increase or decrease in the odds of a review degradation impact occurring per
“unit” value of a predictor (metric). An odds ratio < 1 indicates a decrease
in these odds, while > 1 indicates an increase. Most of our metrics presented
a heavy skew, to reduce it, we applied a log2 transformation on the right-
skewed predictors and a x3 transformation on the left-skewed. Furthermore,
we normalized the continuous predictors in the model to provide normality.
As a result, the mean of each predictor is equaled to zero, and the standard
deviation to one. Finally, to ensure the statistical significance of the predictors,
we employed the customary p-value of 0.05 for each predictor in the regression
model.

Step 7: Manually analyze and classify reviews. In this step, we used
a subset of code reviews that were manually classified in the work of Paixão et
al. [15]. We performed a cross-check analysis of such reviews considering the
commit messages, discussions between developers, and source code. We also
filtered the reviews according to the criteria presented in Step 1, which resulted
in a subset of 1,779 manually analyzed reviews. Based on this analysis, we
conducted two classifications. In the first one, we classified reviews as design-
related or design-unrelated, according to the developers’ intent of improving
the structural design of the system. Reviews were tagged as design-related
when design improving intent was explicit either in the review’s descriptions
or in discussions. The second classification consisted in identifying reviews
in which explicit design discussions occurred. We considered as reviews with
design discussions those in which developers have demonstrated awareness of
the possible impact of their changes in the system’s design.

We performed such classifications according to the following definition of
design: software design is the result of design decisions that affect structural
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quality attributes, either positively or negatively. The manual classification
process was performed by two authors. Each author was responsible for
analyzing the 1,779 code reviews and manually classifying them. We employed
a two-phase process: 1) Each author solely and separately inspected and
classified the same code reviews; 2) the author discussed all the reviews for
which there was a disagreement in the classification until a consensus is
reached.

All the data collected in the aforementioned steps as well as the set of
manually classified code reviews are available in our replication package [58].

3.4
Results and Discussions

Section 3.4.1 discusses how to modern code review affect design degrada-
tion (RQ1). Section 4.4.2 discusses the design degradation evolution patterns
during the code review process (RQ2). Finally, Section 4.4.3 discusses the
relationship between different code review practices and design degradation
(RQ3).

3.4.1
Manifestation of Design Degradation

We addressRQ1 by analyzing the impact of merged reviews on two degra-
dation characteristics: (1) density and (2) diversity of symptoms. Table 3.4
shows the frequency of each type of impact in all target systems. Columns
represent the symptom characteristics. We decomposed those characteristics
into four distinct groups: Density of Coarse-grained Smells (CG Density), Den-
sity of Fine-grained Smells (FG Density), Diversity of Coarse-grained Smells
(CG Diversity), and Diversity of Fine-grained Smells (FG Diversity). They
represent the amount and heterogeneity of degradation symptoms at different
granularity levels. We also categorized the impact of reviews into positive, neg-
ative, and invariant. Positive are those that end up reducing the degradation
characteristic, while negative ones are those that contribute to increasing the
degradation characteristic. Finally, invariant reviews are those that do not
affect the degradation characteristic.

Table 3.4: Type of Impact of Merged Code Reviews
Number of Merged Reviews Per Type of Impact

Impact CG Density FG Density CG Diversity FG Diversity
Positive 1,879 (12%) 2,155 (15%) 101 (<1%) 11 (<1%)
Negative 4,876 (33%) 7,081 (47%) 137 (<1%) 49 (<1%)
Invariant 8,216 (55%) 5,735 (38%) 14,733 (99%) 14,911 (99%)
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Invariant reviews are predominant. Table 3.4 shows that most
merged reviews are invariant regarding the evaluated characteristics. The only
case in which the proportion of invariant reviews is below 50% is for the
density of fine-grained smells. In this case, most of the reviews (47%) had
a negative effect. This result suggests that either (i) modern code review is not
enough to avoid design degradation or (ii) code review is enough despite being
predominantly invariant. In Section 4.4.2, we explore these two possibilities in
detail.

Low impact on the diversity of symptoms. The last two columns
of Table 3.4 reveal that most reviews do not impact on the diversity of both
categories of symptoms. This happens because the diversity is only impacted
when all occurrences of a smell type are removed from the changed code or
when a new smell type is introduced. We noticed that the introduction of
new types of smell usually occurs in the early stages of development since the
codebase is still small and less complex. Complete removals of specific smell
types usually occur when significant changes are made to the design structure
of the system. An example of this occurred in the review number 11,099 [56]
of the spymemcached system.

Impact of reviewing design related tasks. As explained in Sec-
tion 4.3, we classified a sub-set of reviews into two groups: design-related and
design-unrelated reviews. We used the Chi-Square test to compare the impact
of both groups of reviews on the degradation characteristics. Table 3.5 shows
the results for the density of coarse-grained and fine-grained smells. We will
not discuss the results for diversity as they were not statistically significant.
Nevertheless, all the results are available in our replication package [58].

Table 3.5: Chi-Square Results for Evaluating the Dependency Between the
Type of Impact and the Relation with Design

CG Density FG DensityImpact Design Related Design Unrelated Design Related Design Unrelated
Positive 190 (156.35) [7.24] 125 (158.65) [7.14] 151 (131.53) [2.88] 114 (133.47) [2.84]
Negative 443 (477.98) [2.56] 520 (485.02) [2.52] 535 (566.33) [1.73] 606 (574.67) [1.71]
Invariant 250 (248.67) [0.01] 251 (252.33) [0.01] 197 (185.14) [0.76] 176 (187.86) [0.75]
Chi Square X2 = 19.4775, p-value = .000059 X2 = 10.672, p-value = .004815

The last line of Table 3.5 shows the Chi-Square factors (X2) and the
p-values. The other lines represent the impact type (positive, negative, and
invariant) of classified reviews. The 2nd and 3rd columns show the distribution
of reviews into the two compared groups regarding their impact on the density
of coarse-grained smells, while the last two columns show the same information
for the density of fine-grained smells. The numbers in parentheses represent
the number of reviews that are statistically expected in each cell, given their
classification regarding impact (lines) and design-relation (columns). Outside

DBD
PUC-Rio - Certificação Digital Nº 1912727/CA



Chapter 3. How Does Modern Code Review Impact Software Design
Degradation? An In-depth Empirical Study 56

of the parentheses is the number of reviews that, in fact, were observed in each
cell. Finally, in brackets is a value that represents how much each the observed
number of reviews contributed to the composition of the Chi-Square factor.
The higher the difference between expected and observed number of reviews
in the cell, the higher will be the value.

Table 3.5 shows that the number of design-related reviews with a positive
or invariant impact on the density of smells is higher than expected. Moreover,
the number of design-related reviews with negative impact is also lower than
expected. Conversely, there were more design-unrelated reviews with a negative
impact than would be expected. This result is consistent and statistically
significant for both coarse-grained and fine-grained smells. We interpret this
result as evidence that design-related reviews tend to have a more positive and
neutral impact than other types of review. This means that when there is an
explicit intention to improve the design, the degradation can be reduced or at
least remain invariant.

Impact of design discussions. To better characterize the reviews, we
conducted another comparison. In this case, we compared reviews where there
were explicit design discussions (With DD) with reviews without discussions
related to design (Without DD). Once again, we applied the Chi-Square test
to compare both groups regarding their impact on the density and diversity
of symptoms. The results were not statistically significant for the diversity of
CG smells and for both symptoms of FG smells. Table 3.6 shows the result of
this comparison for the density of coarse-grained smells.

Table 3.6: Chi-Square Results for Evaluating the Dependency Between the
Type of Impact and the Presence of Design Discussions

Coarse-grained SmellsImpact With DD Without DD
Positive 63 (64.10) [0.02] 252 (250.90) [0.00]
Negative 235 (195.96) [7.78] 728 (767.04) [1.99]
Invariant 64 (101.95) [14.12] 437 (399.05) [3.61]
Chi-Square X2 = 27.5229, p-value <.001

Our results reveal that design discussions tend to be associated with a
negative impact on the density of coarse-grained smells. We hypothesize that
this result occurred as structurally degraded code usually draws more attention
from reviewers, often causing some type of design discussion. Nevertheless, as
we observed in our manual analysis, such discussions may not contribute to
the reduction of severe design problems.

Finding 1: Reviews with explicit intents of design improvement tend to
reduce or avoid design degradation. However, the sole presence of design
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discussions is not enough for avoiding design degradation.

3.4.2
Degradation Evolution along a Single Review

We address RQ2 by identifying four patterns of design degradation
evolution along with a single review. The procedure that we followed to
identify these patterns is defined in Section 3.3.2 (Step 4). For each degradation
characteristic (density and diversity), we classified reviews into four patterns:
invariant, positive, negative, and mixed. Such patterns can be summarized as
follows. Invariant is composed of reviews in which the characteristic remained
the same across all the revisions submitted during the code review. Positive
is the pattern for reviews in which the last revision reduces the degradation
characteristic when compared to the previous ones. Negative groups reviews
for which the last revision presents an increase in the degradation characteristic
when compared to the previous ones. Finally, mixed is composed of reviews
with signs of reduction and an increase of the characteristic along the revisions.

Table 3.7 shows the degradation evolution within reviews grouped by
symptom category, i.e., coarse-grained and fine-grained smells, and by charac-
teristic, i.e., density and diversity. We also group the reviews by type, i.e.,
design-related or design-unrelated, and different levels of design discussion.
In this table, we show information about a subset composed only of reviews
that improved (Improvement columns) or degraded (Degradation columns) the
structural design, according to the degradation characteristics. For each case,
we present the ratio of reviews classified into the four aforementioned patterns:
invariant (Inv), positive (Pos), negative (Neg), and mixed (Mix).
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Table 3.7: The Ratio of Reviews Grouped by Type, Level of Design Discussion, Symptom Category, Characteristic and Degradation
Evolution

Coarse-grained Smells
Density Diversity

Improvement Degradation Improvement DegradationType Design discussion
Inv Pos Neg Mix Inv Pos Neg Mix Inv Pos Neg Mix Inv Pos Neg Mix

Never 77% 0% 1% 22% 60% 0% 1% 38% 50% 0% 0% 50% 50% 0% 0% 50%
Description 77% 0% 0% 23% 65% 3% 0% 32% 100% 0% 0% 0% 100% 0% 0% 0%
Comments 11% 0% 0% 89% 17% 0% 6% 77% 50% 0% 0% 50% - - - -
Both 29% 0% 14% 57% 25% 3% 5% 68% - - - - 0% 0% 100% 0%

Design-related

All 71% 0% 1% 27% 54% 1% 2% 43% 60% 0% 0% 40% 54% 0% 8% 38%
Never 69% 4% 5% 21% 61% 1% 3% 35% 71% 0% 7% 21% 71% 0% 0% 29%
Description 60% 40% 0% 0% 65% 0% 0% 35% - - - - 0% 0% 0% 100%
Comments 0% 0% 0% 100% 20% 0% 0% 80% - - - - 100% 0% 0% 0%
Both 33% 0% 0% 67% 17% 0% 0% 83% - - - - - - - -

Design-unrelated

All 66% 6% 5% 24% 57% 1% 3% 40% 71% 0% 7% 21% 71% 0% 0% 29%
Fine-grained Smells

Density Diversity
Improvement Degradation Improvement DegradationType Design discussion

Inv Pos Neg Mix Inv Pos Neg Mix Inv Pos Neg Mix Inv Pos Neg Mix
Never 73% 1% 1% 25% 59% 1% 2% 39% 100% 0% 0% 0% 67% 0% 0% 33%
Description 59% 9% 0% 32% 56% 0% 4% 40% - - - - 100% 0% 0% 0%
Comments 11% 22% 0% 67% 14% 0% 0% 86% - - - - - - - -
Both 13% 0% 0% 88% 24% 3% 8% 66% - - - - 0% 0% 0% 100%

Design-related

All 62% 4% 1% 33% 52% 1% 3% 44% 100% 0% 0% 0% 56% 0% 0% 44%
Never 52% 2% 4% 41% 52% 2% 4% 41% 0% 0% 0% 100% 43% 0% 0% 57%
Description 60% 40% 0% 0% 34% 3% 3% 59% 0% 0% 0% 100% 0% 0% 0% 100%
Comments 38% 0% 0% 63% 14% 0% 0% 86% - - - - 0% 0% 0% 100%
Both 100% 0% 0% 0% 13% 0% 0% 88% - - - - - - - -

Design-unrelated

All 68% 1% 5% 26% 48% 2% 4% 46% 0% 0% 0% 100% 30% 0% 0% 70%
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Degradation characteristics and their variation across revisions.
For design-related reviews that presented signs of reduction in degradation
characteristics (3rd and 5th main columns of Table 3.7), we observed that
density and diversity of coarse-grained smells remain invariant in 71% and
60% of the cases, respectively. A similar observation applies when we consider
fine-grained smells. The density and diversity of such category of smells are
invariant in 62% and 100% of the cases, respectively. On the other hand, for
design-related reviews with signs of degradation (4th and 6th main columns of
Table 3.7), the ratio of invariant reviews for coarse-grained smells is 54% for
both density and diversity. For fine-grained smells, the values of density and
diversity are invariant in 52% and 56% of the cases, respectively.

These observations indicate that 64% of design-related reviews, tend to
remain invariant, i.e., preserve the same design impact throughout all revisions.
Conversely, 52% of design-unrelated reviews tend to remain invariant. We
also observed that, for reviews with signs of improvement, the degradation
impact tends to change more when the reviewers provide design feedback. In
such cases, for design-related reviews, the impact on the density and diversity
of coarse-grained smells of the latest merged revision was different than the
previous ones in 88% and 50% of the cases, respectively. For fine-grained smells,
we observed that in 88% of the cases, the density changed in the latest merged
revision. A similar pattern was observed in reviews that presented signs of
degradation.

Finding 2: For design-related and design-unrelated reviews, the degrada-
tion impact on the latest merged revision in comparison with all previous
ones tends to remain invariant in 64% and 52% of the cases, respectively.

Signs of degradation reduction. Table 3.7 presents other observa-
tions. For design-related reviews that reduce the density or diversity of coarse-
grained smells (3rd and 5th main columns), we did not observe any positive
evolution, i.e., changes that improve the structural quality. This happens even
when the reviewers provide feedback on the design quality. On the other hand,
for the density of fine-grained smells, we observed positive and negative evolu-
tion patterns in 4% and 1% of the cases, respectively. Such results are surprising
since the ratio of reduction of 4% only for fine-grained smells was below expec-
tations and different from studies that investigate the impact of refactoring,
i.e., a technique that is commonly used during code review [15, 60, 61].

As expected, the ratio of design-related reviews with a negative evolution
is higher in reviews that present signs of degradation (4th and 6th main
columns of Table 3.7). In such cases, for the density of coarse-grained smells,

DBD
PUC-Rio - Certificação Digital Nº 1912727/CA



Chapter 3. How Does Modern Code Review Impact Software Design
Degradation? An In-depth Empirical Study 60

we observed positive and negative evolution patterns in 1% and 2% of the
cases, respectively. Conversely, we observed a negative evolution pattern in
8% of degradation reviews for diversity. Regarding the density of fine-grained
smells, we observed positive and negative evolution patterns in 1% and 3%
of the cases, respectively. Again, we did not observe any positive or negative
evolution related to diversity.

We also observed that for design-related reviews with signs of either
improvement or degradation, in which the design is discussed in both the
description and comments, there were not successive decreases of the density
of coarse-grained smells. Conversely, we observed an increase in the density
of coarse-grained smells with a ratio of negative evolution is 14%. This is a
surprising finding as we expected that design feedback during code review
would lead to improvements, i.e., a reduction of the design degradation. On
the other hand, considering the level of design discussion in reviews with fine-
grained smells, we observed that when the reviewers provide design feedback
during code review, the evolution patterns are predominantly positive (22%)
and mixed (67%).

These results indicate that design discussions during code review may
influence the review’s impact on degradation characteristics. However, such
impact tends to be positive only for the density of fine-grained smells, indi-
cating that design discussions provided by developers during code review do
not help the developers to decrease coarse-grained smells, i.e., such symptoms
are often aggravated rather than minimized. In fact, fine-grained smells are
simpler to remove and refactor as they represent smaller readability and un-
derstandability problems [23]. Conversely, coarse-grained smells are often hard
to remove as they represent more severe problems, requiring more complex
refactorings [60].

Finding 3: Code reviews usually do not reduce coarse-grained smells, even
when there is design feedback.

Degradation symptoms and their fluctuation during code re-
view. Finally, we observed that the ratio of design-related reviews with a sign
of improvement in density and diversity of coarse-grained smells are often clas-
sified as mixed evolution in a ratio of 27% and 40% of the cases, respectively.
Regarding the impact on the density of fine-grained smells, the ratio of reviews
with a mixed evolution is also the highest in 33% of the cases when compared
to the reviews with positive and negative evolution. Surprisingly, this pattern
of evolution holds even when the developer provides some feedback on the de-
sign quality. A similar observation applies when we consider the design-related
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reviews that presented signs of degradation, in which nearly 42% of reviews
are classified as mixed.

In our manual analysis, we observed that mixed evolution usually occurs
as a side effect of two factors: (i) deleting of duplicated or unnecessary code; and
(ii) reorganizing the code to make it more reusable. For instance, consider the
code review 9,015 from the linuxtools, which caused a significant improvement
regarding coarse-grained smells. This review has a total of 11 revisions, in
which fluctuation occurred after the following feedback provided by reviewer:
“This class and ProviderOptionsTab are almost identical except for a few small
differences [...]. Would it be possible to define some abstract class and have
these inherit override just what they need?“. Such suggestion led to an increase
in smells that affect abstraction and encapsulation issues.

These observations suggest that even if the developers identify and
remove fine- and cross-grained smells, they still will not be able to see all the
ramifications of the impact of their changes along revisions. However, at the
end of the code review process, i.e., in the last merged revisions, the developers
tend to preserve the positive impact on the system’s internal structure. We
conjecture that this happens because the existing modern code review tools
still lack a mechanism to provide developers a just-in-time recommendation
about the impact of their changes on software design degradation [33].

Finding 4: Nearly 34% of design-related reviews present a mixed evo-
lution. This happens even in reviews that present signs of improvement
and degradation. This result motivates the proposition of recommenders
to better support developers, in the improvement of design quality and
prevention of design problems during code review.

3.4.3
Code Review Practices and Design Degradation

We address RQ3 by assessing the influence of code review practices
on software degradation. We have applied a multiple logistic regression to
support this assessment (Step 6 of Section 3.3.2). Table 3.8 summarizes the
main results. Each row represents the results for each project, separated by
symptom category (coarse-grained (CG) and fine-grained (FG) smells) and
degradation characteristic (density and diversity). The “all” row represents
the results for the data of all projects combined. The gray cells represent the
metrics that presented statistical significance relation in a specific combination
of symptoms and characteristics. Moreover, we used the ↑ symbol to indicate a
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degradation risk-increasing effect, and the ↓ symbol to indicate a degradation
risk-decreasing effect.

The data of three projects were omitted from the Table 3.8, but can
be fully seen on our replication package [58]. We removed these data because
only a few metrics were statistically significant, but they are considered on
the “all” row. Additionally, the control variables (Section 3.3) were omitted,
but when applied on the model, only the DiffComplexity and DiffSize
variables were statistically significant across projects. To understand if the
control variables were collinear with the code review metrics, we executed the
model only with the control variables, and the results were similar. This implies
that our code review metrics were capable of working as a standalone model to
verify the risk-increase or risk-decrease effect on degradation in each system.
Next, considering only statistically significant cases, we discuss the code review
practices by risk-increasing and risk-decreasing effects as follows.
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Table 3.8: Code Review Activity Metrics of Reviews with Positive and Negative Impact, Grouped by System, Symptom, Characteristic
and Dimension. The ↑ Symbol to Indicate a Risk-increasing Effect, and the ↓ Symbol to Indicate a Risk-decreasing Effect

Review Intensity Review Participation Review TimeSystem Symptom Characteristic DL PRWF CDCR NA NNAV PRD RL TRW ARR RD
Density 1.023 1.129 1.713 1.008 0.772 ↓ 1.143 1.191 0.856 1.127 1.04CG Diversity 1.046 1.134 1.705 1.007 0.768 ↓ 1.132 1.181 0.865 1.118 1.034
Density 1.334 1.04 1.472 1.014 0.777 ↓ 0.93 1.028 1.279 ↑ 0.897 1.035jgit

FG Diversity 1.334 1.04 1.472 1.014 0.777 ↓ 0.93 1.028 1.279 ↑ 0.897 1.035
Density 1.497 ↑ 0.941 0.342 ↓ 0.97 1.116 1.01 1.306 ↑ 0.701 ↓ 1.094 1.018CG Diversity 1.321 0.994 0.4 ↓ 0.961 1.107 1.075 1.279 ↑ 0.587 ↓ 1.294 ↑ 1.009
Density 1.416 ↑ 0.976 0.743 0.956 0.76 ↓ 1.012 1.322 ↑ 1.069 0.903 1.169 ↑egit

FG Diversity 1.354 ↑ 0.974 0.701 0.961 0.767 ↓ 1.025 1.366 ↑ 1.069 0.903 1.153 ↑
Density 1.112 1.569 ↑ 0.864 1.166 1.257 ↑ 0.912 1.249 0.713 ↓ 1.118CG Diversity 1.116 1.582 ↑ 0.854 1.151 1.268 ↑ 0.898 1.216 0.732 ↓ 1.14
Density 0.873 1.533 ↑ 0.842 ↓ 1.231 ↑ 1.394 ↑ 0.94 1.021 0.826 1.11linuxtools

FG Diversity 0.873 1.533 ↑ 0.842 ↓ 1.231 ↑ 1.394 ↑ 0.94 1.021 0.826 1.11
Density 1.073 1 0.723 ↓ 0.971 1.175 0.932 1.032 0.827 1.268 0.872 ↓CG Diversity 1.071 1 0.717 ↓ 0.946 1.176 0.938 1.031 0.82 1.275 ↑ 0.877 ↓
Density 1.051 0.998 0.737 ↓ 0.984 1.053 0.979 1.265 ↑ 0.899 1.272 ↑ 0.909platform.ui

FG Diversity 1.051 0.998 0.737 ↓ 0.984 1.053 0.979 1.265 ↑ 0.899 1.272 ↑ 0.909
Density 1.115 ↑ 1.145 0.96 ↓ 1.16 1.005 1.045 ↑ 0.887 1.076 ↑ 0.917CG Diversity 1.106 ↑ 1.162 0.948 ↓ 1.158 1.016 1.037 ↑ 0.845 ↓ 1.12 ↑ 0.913
Density 1.155 ↑ 1.092 0.962 1.043 1.025 ↑ 1.079 ↑ 1.101 0.957 0.954All

FG Diversity 1.144 ↑ 1.091 0.963 1.045 1.028 ↑ 1.084 ↑ 1.102 0.955 0.953
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Risk-increasing effect on software degradation. We observed that
the metrics DL, PRWF, NNAV, PRD, RL, TRW, ARR, and RD presented a risk-
increase tendency. By analyzing each metric individually, we observed that four
metrics sustained a risk-increasing tendency across projects: Discussion Length
(DL), Proportion of Revisions without Feedback (PRWF), Proportion of Review
Disagreement (PRD), and Review Length (RL). Such behavior was expected
for the PRWF and PRD metrics, since they confirm the rationale presented in
Table 3.3. Conversely, the results for the DL, RL and TRW metrics are unexpected,
since they differ from that were reported by related studies [6, 24, 42], we
will discuss latter in this section. By considering the degradation symptoms,
all metrics presented themselves as good predictors for all symptoms and
characteristics, except for a few metrics: the Number of Non-Authors Votes
(NNAV) metric, that on the project linuxtools was only related to fine-grained
smells, as a risk-increasing factor; and Average Review Rate (ARR) that was
related to coarse-grained smells on 66% of the cases as a risk-increasing factor.
Moreover, the Proportion of Revisions without Feedback (PRWF) metric stood
out as the metrics with the highest risk-increasing effect, followed by the
Discussion Length (DL) metric, reaching values of 1.58, and 1.49, respectively.

Long discussions are not reflected as concerns about structural
degradation. By considering the intensity dimension metrics (Table 3.8), we
observed that two of the three metrics presented a degradation risk-increase
tendency in at least one project. The metrics Discussion Length (DL) and
Proportion of Revisions without Feedback (PRWF) preserved this behavior in
most of the significant cases. This observation indicates that developers tend to
introduce more instances and more types of degradation symptoms in reviews
that either has longer discussions or do not have any discussions started by
human participants. As illustrated in our motivating example (Section 4.2),
and also confirmed in our manual analysis, long discussions do not necessarily
indicate that developers and reviewers are concerned about the structural
quality of the code. Reviewers can often be concerned with functional aspects
of the system, paying less attention to possible signs of degradation. Thus,
when there are extensive discussions about specific features, the code tends to
undergo further modifications that increase design degradation.

Finding 5: Reviews for which the practice of long discussions was applied
are often associated with a higher risk of software degradation.

A high proportion of review disagreement leads to a degrada-
tion risk-increasing effect. By considering the metrics of the participation
dimension, only the Proportion of Review Disagreement (PRD) metric presented
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a risk-increase tendency across all projects. Nevertheless, the Number of Non-
Author Voters (NNAV) metric raised some concerning results on the linuxtools
system. As illustrated in our motivating example (Section 4.2), this result indi-
cates that reviews with a high rate of acceptance discrepancy tend to introduce
more instances and more types of degradation symptoms.

Finding 6: Reviews following the practice of participation with a higher
rate of review disagreement lead to a higher risk of software degradation.

Lack of reviewers’ attention and code review speed increase the
risk of degradation. Table 3.8 also shows that the longer (RL) and faster
(ARR) review takes to be finished, the higher the risk of degradation. At first,
this result seems to be counter-intuitive. However, in our manual analysis,
we observed that certain reviews often take a longer time due to the lack of
attention of the reviewers during the code review. This observation suggests
that reviewers will be able to identify more design problems that are overlooked
during the code review, whether they perform a careful code inspection with an
appropriate code review rate. By considering our motivating example again, we
can observe that this review takes a long time from the first patch submission
to the reviewer’s acceptance for integration (Aug 16, 2015 to Oct 9, 2015).
Moreover, we observed a lack of attention from the reviewer of revision 7 to
revision 10. For instance, the code author has addressed the reviewer’s lack of
attention with the following comment: “[...] do you have time for a review?“.
After that comment, the code author only got a response from the reviewer
after 16 days. Within this time, the code author continued to modify the source
code without feedback from the reviewers.

Finding 7: Reviews tend to be longer due to the lack of attention from
the reviewer during the code review process, and this increases the risk of
software degradation.

Risk-decreasing effect on software degradation. Table 3.8 shows
that the Churn During Code Review (CDCR), Number of Authors (NA), Number
of Non-Authors Votes (NNAV), Time Review Window (TRW), Average Review
Rate (ARR), and Response Delay (RD) metrics present a risk-decreasing ten-
dency. Moreover, the metrics NA, and NNAV also presented consistent results, as
the NNAV showing a risk-decreasing likelihood for most target systems, except
for the linuxtools system. Moreover, this metric was risk-decreasing in 75% of
the statistically significant cases. Thus, it can be considered as a reliable pre-
dictor of reduction in structural degradation. CDCR showed good results on egit
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and platform.ui projects, performing very good results on egit (0.34). Look-
ing over the dimensions, there is evidence that the CDCR metric is a reliable
predictor of risk-decreasing for the Intensity Dimension, the NNAV represents
the Participation Dimension, on Time Dimension no metric really outcome
as a reliable predictor. We can see a minor difference between symptoms; the
risk-decreasing appeared more (60%) on the coarse-grained symptom.

Active engagements of multiple reviewers decrease the risk of
degradation. By considering the participation dimension, the Number of
Authors (NA), and the Number of Non-Authors Votes (NNAV) metrics showed
to be reliable predictors of risk-decreasing. However, only the NA preserved
this behavior across projects. Thus, the higher the number of authors, the
higher will be the likelihood of degradation risk-decreasing. This observation
is aligned with previous studies [40, 50, 11, 8], by suggesting the greater the
number of authors revising the proposed changes during reviews, the more
design issues could be identified and removed, especially coarse-grained smells,
whose identification and removal often required a better understanding of the
codebase.

Finding 8: Reviews with active engagements of multiples reviewers tend
to present a degradation risk-decreasing effect, especially for coarse-grained
smells.

3.5
Threats to Validity

We discuss threats to the study validity [2] as follows. Construct and
Internal Validity. Aspects such as the precision and recall of degradation
symptoms may have influenced the results of this study. We tried to mitigate
this threat by selecting a detection tool that has been successfully used in
recent studies involving design degradation [4, 29, 52].

We have selected a set of 12 code review activity metrics that helped us
measure different dimensions of code review practices, i.e., intensity, partici-
pation, and time. The rationales for using metrics are supported by previous
studies (e.g., [8, 24]). We wrote scripts to automate the design degradation
evolution pattern computation and code review metrics. These scripts were
validated by two of the paper authors. Regarding the code review activity
metrics, we measured some metrics based on heuristics. For instance, we have
assumed that the review length is the time that elapses between the time
a patch has been uploaded and when it has been approved for integration.
Thus, although there is a limitation of measuring the code review practices,
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we rely on state-of-the-art practices based on heuristics to recover this kind of
information.

Conclusion and External Validity. We carefully performed our de-
scriptive and statistical analysis. About the descriptive analysis, four paper
authors contributed to the analysis of code review impact on design degrada-
tion. For the statistical analysis, we rely on the Multiple Logistic Regression,
as previously stated in Section 4.4.3, we reduced the heavy skew of our met-
rics applying a log2 transformation on the right-skewed predictors and a x3

transformation on the left-skewed. Moreover, we normalized the continuous
predictors in the model to provide normality, and, to ensure the statistical sig-
nificance, we employed the customary p-value of 0.05 for each predictor in the
regression model. Furthermore, in our statistical model, we controlled some
factors that may affect our outcomes via product and process metrics.

Regarding the qualitative analysis of design-related reviews, we employed
a two-phase manual classification procedure. In the first, all reviews were clas-
sified by two authors. In the second phase, for all reviews in disagreement, both
authors discussed to reach a unified classification. Finally, the analysis of code
review impact on design degradation is based on two degradation character-
istics – density and diversity of symptoms. One might expect different results
using other characteristics. We relied on density and diversity because they
are widely-adopted for design degradation analysis and have been evaluated in
previous studies [29, 34, 53].

3.6
Conclusion and Future Work

In this work, we analyzed the impact of modern code review on evolution
of design degradation, by mining code review data from two large open source
communities. Our findings pointed out that design discussions may not be
enough for avoiding design degradation. Conversely, reviews with explicit
intent to improve the design tend to have a positive or invariant impact on
design degradation. We also observed that, during the revisions of each review,
there is often a wide fluctuation of design degradation. Such fluctuations often
result in the amplification of design degradation, even in design-related reviews.
Finally, we observed that certain code review practices might increase the risk
of design degradation, including long discussions, and a high rate of reviewers’
disagreement.

As future works, we aim to (i) evaluate the effect of code reviews on
other types of degradation symptoms, and different characteristics of design
degradation; (ii) expand the code review metrics and dimensions to understand
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their role on software degradation, and (iii) investigate mechanisms to better
support developers, in the continuous improvement of design quality during
code review.

3.7
Summary of Chapter 3

In order to address our first research problem (see Section 1.2) this
chapter presented a seminal study that characterizes how the process of design
degradation evolves within each review and across multiple reviews. To this
end, we investigate 14,971 code reviews from seven software projects. Moreover,
we analyze a comprehensive suite of metrics to enable us to observe the
influence of certain code review practices on combating or even accelerating
design degradation.

Our results show that the majority of code reviews had little to no design
degradation impact in the analyzed projects. More interestingly, this observa-
tion also applies to reviews with an explicit concern on design. Surprisingly,
the practices of long discussions and high proportion disagreement in code re-
views were found to increase design degradation. Finally, we also discuss how
the study findings shed light on how to improve the research and practice of
modern code review.
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4
Predicting Design Impactful Changes in Modern Code Re-
view: A Large-Scale Empirical Study

An earlier version of the work in this chapter appears in
the Proceedings of the 18th International Conference on Mining

Software Repositories (MSR) [70].

The first published work performed through this doctoral thesis (Chap-
ter 3) revealed various findings regarding the impact of modern code review
on software design degradation. Specifically, the Finding 4 about the presence
of a mixed evolution degradation during code reviews, gave us insight about
the need to propose of mechanisms to better support developers, in the im-
provement of design quality and prevention of design problems during code
review.

With this in mind, and knowing that code review is affected by social
and technical aspects, in this chapter, the paper Predicting Design Impact-
ful Changes in Modern Code Review: A Large-Scale Empirical Study will be
presented in its entirely. The paper was published in the 18th International
Conference on Mining Software Repositories (MSR) [70]. This study compre-
hends the second contribution of this Doctoral research: The understanding of
the role of social aspects in distinguishing and predicting (un)impactful design
changes. (see Section 1.4.2).

4.1
Introduction

Modern code review is a practice that has been widely adopted by major
companies [14, 26]. It is typically a lightweight, informal, asynchronous, and
tool-assisted practice aimed at monitoring, detecting and removing issues that
were introduced during development tasks [14]. Supported by platforms such
as Gerrit and GitHub, the code review process is initiated by one developer
referred to as the owner, which modifies the original codebase and submits a
new code change to be reviewed by other developers – the so-called reviewers.

A key concern of all stakeholders involved in a code review, including code
owners, reviewers, and team managers, is to become aware of ongoing changes
impacting the design [15, 60, 136]. The underlying motivation is to monitor
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and inspect those design impactful changes so that stakeholders can anticipate,
find, and remove signs of design degradation before the end of a code review.
Otherwise, those design harmful changes can become prevalent after the code
review [24, 40]. If design impactful changes are not discriminated and brought
to attention early, it will increase the likelihood of those changes finding their
way into the system for several reasons. These include reviewers deviating their
effort to other quality checks in later review stages or even starting to focus
only on the main purpose of the issue being resolved. Moreover, design-related
changes become harder to revert towards the end of the review as many other
inter-related modifications were already realized as the review progresses. In
fact, these reasons explain why many design impactful changes get unnoticed
as nearly 40% of pull request rejections are related to design issues [156].

Early identification of impactful changes that degrade the software design
is important during code review [33, 74, 136]. Code reviewers are expected to
inspect ongoing changes and provide prompt feedback to code owners in the
form of comments. In turn, the code owner should fix and forward the new
version of the code for inspection. Such a procedure is repeated in multiple
iterations, which are called revisions. This sequence of revisions ends up with
either the acceptance or rejection of the change into the codebase [13, 66].

Despite its importance, recent studies found these modern code review
practices are far from being sufficient to prevent design-degrading changes [32,
136]. Design degradation occurs whenever a change introduces poor structural
decisions, i.e., design smells [34, 46, 69, 134]. Tools for detecting design smells
tend to be inefficient when a change is still at its early stages. For instance, the
full addition of a new feature can be complex and its realization needs many
revisions to be accomplished. Moreover, other types of change can be complex
as well. In fact, several changes in software projects are fully realized only after
many revisions in a single review.

If these harmful changes are not reversed early, i.e., before a code review
is ended, rework will be necessary after the changes of the last merged revision.
Further changes with time-consuming refactorings will have to be applied
later. Given the costs of design refactorings, they are unlikely to be applied
and smells will be compounded over time, thereby accelerating the design
degradation [15, 29, 136].

Due the importance of the early identification of design relevant changes
during the review process, stakeholders must use all available information
during the code reviewing process. In code review platforms, stakeholders have
either technical or social information at their disposal to be used as additional
information, both before or after each change. Social information are often
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available as soon as code review starts. Social information includes: number
of prior code changes submitted by the code owner, and centrality of the code
owner on the collaboration graph [7, 97, 98, 99]. Technical information are
available after changes and revisions done during the review. Examples of
technical information include: number of times a file has been changed and
types of change [49, 94, 96, 99].

The advantage of using technical and social metrics to characterize and
predict failures have widely been studied [93, 95, 100, 101]. However, their use
to discriminate and predict design impactful changes is rarely studied [32, 136].
In fact, such metrics can act as indicators of design impactfulness of ongoing
changes along the code review process. Hence, to the best of our knowledge,
there is no study on which types of metrics can be used as effective features
in Machine Learning (ML) algorithms to accurately predict design impactful
changes.

This paper presents results of a large-scale empirical study that inves-
tigates whether and how technical and social metrics can be used to predict
design impactful changes. To this end, we analyzed more than 50k code re-
views of seven real-world systems from two large open source communities.
We mined and examined if a comprehensive suite of technical and social met-
rics can discriminate design (un)impactful changes. Then, we explored the use
of these metrics, as features for six interpretable ML algorithms, which tend
to offer an effective prediction for different tasks and contexts, e.g., [114, 93].
Finally, we evaluated the predictive power of the selected features and algo-
rithms to assist developers to automatically determine whether a code change
is impactful.

Our key findings and contributions are: (1) both social and technical
metrics are able to distinguish design (un)impactful changes; (2) the use of
technical features results in more accurate predictions, when compared to the
social ones; (3) features related to the code change, commit message, and file
history dimensions are effective for differentiating (un)impactful changes; (4)
Random Forest and Gradient Boosting have shown to be the most accurate
in predicting design impactful changes; and (5) an enriched dataset and
replication package that allows researchers to investigate the context and
motivations behind design impactful changes during code reviews.

4.2
Motivating Example

Next we show the importance of considering design impact and using
social and technical aspects during code review. To this end, we rely on two

DBD
PUC-Rio - Certificação Digital Nº 1912727/CA



Chapter 4. Predicting Design Impactful Changes in Modern Code Review: A
Large-Scale Empirical Study 72

scenarios of the jgit system in which code review is conducted on the Gerrit
platform.

Scenario A. Let us consider the review 3345 [131], composed of seven
revisions, in which two developers performed a major change to “Replace
TinyProtobuf with Google Protocol Buffers”. After the last revision, 12,215
insertions and 2,404 deletions were performed in 58 files. Additionally, 104
design smells were introduced, leading to structural degradation related to the
lack of abstraction (46), encapsulation (17), and modularity (42). Interestingly,
design impact was not mentioned during revisions of the reviews of this major
change. In other words, the replacement of a third-party component was
conducted without an explicit concern with possible side effects that the change
could introduce into the system.

Scenario B. Now consider the review 825 [132], which aims to “Imple-
ment a Dircache checkout (needed for merge)”. This review had four reviewers
and 18 revisions. After the first revision (R1), we observed a inclusion of three
smells: two Unutilized Abstraction and one Insufficient Modularization. Such
smells were perceived by a developer, according to the following comment:
“One problem I faced here: we do have an abstraction to access the WorkTree
when walking (reading) on it.” Additionally, during the revisions (R3 to R10),
we observed removals and reintroductions of the smells Unutilized Abstraction
and Insufficient Modularization, characterizing a high fluctuation of design
degradation during revisions. In other words, despite the developers identify
degradation symptoms, they still are not able to see all the ramifications and
impacts of their changes along with revisions.

Both scenarios illustrate the need for mechanisms to aid developers on
identifying and preventing design impactful changes. Such mechanisms can rely
on the large, diverse, rich information from social and technical aspects of the
system and stakeholders in the code review. In Scenario A, when developers
are unaware of the design impact of their change, a mechanism could have
supported reviewers by automatically analyzing the discussions that took place
on previous revisions and the components involved in the changes to predict
the impact of changes in the current revision on the system design. In Scenario
B, a mechanism could have analyzed the previous behavior of the code owner,
and reviewers could better understand which changes are harming the source
code.

In this context, one could argue: why not only using existing tools, such
as Designite [4], to identify design degradation? Despite useful, such tools are
limited. Besides the reasons already mentioned in Section 4.1, they rely only
on static analysis in which detection strategies do not adapt per revision, not
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exploring the history of changes and multiple sources of information. They
ignore the variation of technical and social aspects inherent to the code review
process [32, 98, 136].

In summary, the motivations for our work are: (i) a real-world need
for mechanisms to aid stakeholders in identifying impactful design changes
during code review, (ii) availability of large and rich sources of information
that can be used to make stakeholders aware of their changes’ impact, and
(iii) limitation of existing tools on using historical and dynamic information
to support stakeholders during code review.

4.3
Study Settings

Section 4.3.1 presents both goal and research questions. Finally, the next
sections shows the study steps and procedures.

4.3.1
Research Questions

Our study is guided by four research questions (RQs).
RQ1: Are design impactful changes significantly different from unimpact-

ful ones in terms of social and technical metrics? – Social and technical aspects
may be avoiding or amplifying design degradation. To capture such aspects,
we used a set of metrics detailed in Section 4.3.5. RQ1 aims at investigating
which metrics are able to distinguish between design impactful changes and
unimpactful ones.

RQ2: What is the performance of ML algorithms to predict design
impactful and unimpactful changes? – Once we show empirical evidence that
distinguishes impactful and unimpactful changes, RQ2 aims at investigating
the use of supervised ML techniques to assist developers in automatically
make their decisions. In practice, some prediction algorithms perform better
than others, depending on the task. Thus, we compare the performance of six
interpretable ML algorithms: Logistic Regression, Naive Bayes, SVM, Decision
Tree, Random Forest, and Gradient Boosting. We chose these algorithms since
they provide an intuitive and easy to explain model [78, 79].

RQ3: How effective are the social and technical features as a proxy to
the design impactfulness changes? – RQ3 aims at evaluating and comparing
the performance of both kinds of features. To this end, we applied the ML
algorithm using three feature sets: a set using only social features, a set using
only technical ones, and a set using technical and social features together. By
answering RQ3, we will be able to identify which kind of features are the

DBD
PUC-Rio - Certificação Digital Nº 1912727/CA



Chapter 4. Predicting Design Impactful Changes in Modern Code Review: A
Large-Scale Empirical Study 74

best predictor, as well as the effectiveness of combining social and technical
features. Furthermore, we also evaluated the effectiveness of a feature selection
step for the three sets.

RQ4: What features are the best indicators of impactful design changes?
– RQ4 aims at understating which features are considered the most relevant
by the models. Such knowledge is essential because, in practice, a model should
be as simple and require as little data as possible. By answering RQ4, we will
be able to provide insights to practitioners and researchers as to what factors
best indicate design impactful changes.

4.3.2
Code Review Data

To answer our RQs, we need not only information of the source code to
distinguish design impactful changes, but also to analyze every code revision
submitted along the code review process and investigate technical and social
information related to those revisions. Thus, instead of mining code review
data ourselves, we used the data provided by the Code Review Open Platform
(CROP) [3], an open-source dataset that links code review data to software
changes. All systems in CROP employ Gerrit as their code review tool. Hence,
by using CROP, we have access to a rich dataset of code changes. To this end,
given a certain system, CROP provides a complete copy of the entire codebase
for each revision and its respective parent, which represents the system’s
codebase at the time of review. In other words, unlike the Git repository of a
system, which contains only accepted revisions (i.e., the changes in the final
revisions in a review), the CROP stores all revisions.

In our study, we adopt all Java systems included in the CROP dataset:
four systems from the Eclipse community and three systems from the Couch-
base community, as presented in Table 4.1. For sake of completeness, we remove
the reviews whose status is “Open” since they may not have been assigned to
reviewers, and the set of reviewers may still change.

Table 4.1: Software Systems Investigated in this Study
Community System # of Reviews # of Revisions Time span

jgit 5,304 13,578 10/09 to 11/17
egit 5,220 12,814 9/09 to 11/17
platform.ui 4,527 13,418 20/13 to 11/17Eclipse

linuxtools 4,074 11,418 6/12 to 11/17
java-client 909 2,622 11/11 to 11/17
jvm-core 828 2,269 4/14 to 11/17Couchbase
spymemcached 536 1,379 5/10 to 7/17
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4.3.3
Detection of Degradation Symptoms within Code Reviews

We investigated two categories of degradation symptoms, which are
fine-grained (FG) and coarse-grained (CG) smells [30]. Although we do not
focused on architectural smells, we empirically observed they follow similar
trends in a complementary analysis. FG smells are indicators of structural
degradation in the scope of methods and code blocks [30]. For instance, the
Long Method is a FG smell that occurs in methods that contain too many lines
of code. CG smells are symptoms that may indicate structural degradation
related to object-oriented principles, e.g., abstraction, encapsulation, and
modularity [30, 34]. An example of CG smell is Insufficient Modularization [30].
This symptom occurs in classes that are large and complex due to the
accumulation of responsibilities. Such categories encapsulate a set of symptoms
that are more perceived and used by developers in practice to identify and
refactor source code locations degraded [22, 34, 36, 37].

For automatically detecting symptoms of such categories, we used a
state-of-the-practice tool called DesigniteJava [4], which detected a total of
27 degradation symptoms types: 17 CG smells, and 10 FG smells. Hence,
for each system, we identified these symptoms by considering each submitted
revision that has undergone the code review process. Thus, we used CROP
to access the versions of the system before and after the revision took place.
Next, we detected the degradation symptoms in each version before and after
revision. By following this methodology, we are guarantee that the introduced
degradation symptoms between each version were solely introduced by the code
changes in the revision. Table 4.2 lists the 27 symptoms types investigated in
our study. We provide all descriptions, detection strategies, and thresholds for
each type of symptom in the replication package [58].

Table 4.2: Degradation Symptoms Investigated in this Study
Coarse-grained Smells
Imperative Abstraction, Multifaceted Abstraction, Unutilized Abstraction, Unnecessary Abstraction,
Deficient Encapsulation, Unexploited Encapsulation, Broken Modularization, Insufficient Modularization,
Hub Like Modularization, Cyclic Dependent Modularization, Rebellious Hierarchy, Wide Hierarchy,
Deep Hierarchy, Multipath Hierarchy, Cyclic Hierarchy, Missing Hierarchy, Broken Hierarchy.
Fine-grained Smells
Abstract Function Call From Constructor, Complex Conditional, Complex Method, Empty Catch Block,
Long Identifier, Long Method, Long Parameter List, Long Statement, Magic Number, Missing Default.

4.3.4
Identification of Design Impactful Change Instances

We identified design impactful change instances in two steps: (i) identifi-
cation of smelliness files by considering each revision of a code change, where
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each revision was compared to its parent, i.e., the codebase’s version before
any revision; and (ii) the computation of design degradation indicators.

To illustrate the first step, let Rs = {r1, r2, ..., rn} be the set of submitted
revisions for a given review s. For each revision in Rs (i.e., ∀ri, ri ∈ Rs), we use
the CROP to retrieve the system’s versions before and after ri. Next, we check
the presence of degradation symptoms (both CG and FG smells) in the files
of ri. The two file sets (before and after) might not be exactly the same, due
to files created and deleted during the review process. Since the before version
of each revision is its parent, we guarantee that the introduced degradation
symptoms between each version were solely introduced by the code changes in
ri, avoiding the collateral effects of the rebase [113]. The output of this step is,
for each revision in Rs, the version of the files impacted before and after the
revision.

In the second step, we rely on an existing grounded theory [34] that
explains that developers tend to consider multiple degradation characteristics
in terms of density and diversity of symptoms. In addition, the use of density
and diversity of symptoms for detecting design degradation is supported by
other studies [36, 29]. Such studies show that degraded code elements tend to be
affected by higher diversity and density of symptoms when compared to other
code elements. However, before selecting diversity and density of symptoms as
metrics, we compared the two lists of smells (by density and diversity) before
and after revisions. As a result, we observed a small average variation (<1 type
of smell/revision). Thus, computing the degradation in(de)crease with density
imposes only a minor threat. Therefore, we take into account only the density,
as a metric to measure the level of design degradation.

Therefore, for each selected system, we computed this characteristic in
the context of each symptom category (CG and FG smells), for all the collected
revisions. Density was computed for each version before and after revision, as
the sum of the number of symptom instances in the set of smelliness source
code files. The computation of density before and after revisions, allowed us to
generate two different indicators of design degradation for each revision, where
each indicator represents the differences in density of FG and CG smells.

In summary, a positive difference in the density of symptoms indicates an
increase in the degradation as a result of the revision, therefore, harming the
design. Similarly, a negative difference indicates a reduction of the degradation
as a result of the revision. Finally, no variation indicates that there has been
no structural design change. We consider that a design change is impactful
when an increase or reduction in design degradation was observed as a result
of submitted changes. Conversely, unimpactful changes are submitted changes
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that do not affect design degradation. Table 4.3 shows the number of revisions
identified as design (un)impactful changes for each system and symptom
category.

Table 4.3: The Number of Revisions Identified as Design Impactful Changes
Coarse-grained Smells Fine-grained SmellsProject Impactful Unimpactful All Impactful Unimpactful All

java-client 751 (29%) 1,871 (71%) 2,622 1,340 (51%) 1,282 (49%) 2,622
jvm-core 630 (28%) 1,639 (72%) 2,269 1,054 (46%) 1,215 (54%) 2,269
spymemcached 423 (31%) 956 (69%) 1,379 586 (42%) 793 (58%) 1,379
platform.ui 2,431 (18%) 10,987 (82%) 13,418 4,460 (33%) 8,958 (67%) 13,418
egit 2,973 (23%) 9,841 (77%) 12,814 5,192 (41%) 7,622 (59%) 12,814
jgit 3,995 (29%) 9,583 (71%) 13,578 6,082 (45%) 7,496 (55%) 13,578
linuxtools 3,321 (29%) 8,097 (71%) 11,418 4,837 (42%) 6,581 (58%) 11,418
Total 14,524 (25%) 42,974 (75%) 57,498 23,551 (41%) 33,947 (59%) 57,498

4.3.5
Features for Design Impactful Change Prediction

We extracted a set of features able to capture both technical and social
aspects of the changes involved in each revision of a code review. Each
feature corresponds to a metric. We detail each feature and its description
per dimension on Table 4.4.

From the technical perspective, we extracted 21 features related to
source code, modification history of the files, and the textual description of
the change. Moreover, these features were categorized into five dimensions: (i)
Size consists of features related to source in their smallest granularity. Prior
studies have found that large patches may need more effort to review [5]; (ii)
Diffusion comprehends the features about changes distributed on two or more
files (e.g., number of changed files). Prior studies also found that revisions,
where their changes scatter across a large number of files or directories, may
need more effort to review [94, 99]. Thus, we expected that the diffusion
of a change could influence the likelihood of the change being impactful;
(iii) Complexity comprehends the features on the complexity of a change.
A code change with more code segments modified is likely more complex
and requires more effort and time to be reviewed [111]; (iv) File history
is composed of features related to the history of the files. The number of
prior changes to a file can be a good indicator to detect degraded files.
Moreover, files that are previously touched by more developers are more likely
to introduce degradation symptoms [49, 94, 96]; and (v) Textual consists of
features that capture textual characteristics of the commit message. Previous
studies [82, 112] found that the description length of a patch is related to
its likelihood of receiving poor comments. Additionally, the commit message
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Table 4.4: Technical and Social Features Adopted in our Study
Technical Features

Dimension Name Description
NLA Number of inserted lines in this code change
NLD Number of deleted lines in this code change
CHURN Number of lines added to and removed in this code change
NFA Number of added files in this code change

Size

NFD Number of deleted files in this code change
NCF Number of changed files in this code change
NMD Number of modified directories in this code change
ME Distribution of modified code across files in this code change
NLANG Number of programming languages used in this code change

Diffusion

NFT Number of file types in this code change
NSA Number of added code segments in this code change
NSD Number of deleted code segments in this code changeComplexity
NSU Number of updated code segments in this code change
FM Number of times files in this code change were modified beforeFile history FD Number of developers who changed files in this code change
ML Number of words in description of this code change
BUG Whether description of this code change contains word “bug”1

FEAT Whether description of this code change contains word “feature”1

IMPR Whether description of this code change contains word “improve”1

DOC Whether description of this code change contains word “document”1

Textual

REFC Whether description of this code change contains word “refactor”2

Social Features
Dimension Name Description

NC Number of prior code changes submitted by the owner of this code change
NRC NC in recent 120 days
NDC NC that contain at least one directory affected by this code change
NR Number of prior code changes the owner of this code change is assigned to inspect
MR Merged rate of prior code changes submitted by the owner of this code change
RMR MR in recent 120 days and normalized over the recent change number

Developer’s
Experience

DMR MR that contain at least one directory affected by this code change
NIC Number of inline comments made by reviewers.
NWIC Sum of the all words of each inline comment.3
PWIC NWIC weighted by the number of inline comments.3
NGC Number of general comments made by reviewers.
NWGC Sum of the all words of each general comment.3
PWGC NWGC weighted by the number of general comments.3

Discussion
Activity

DL Number of general comments and inline comments written by reviewers
SD The degree centrality for a node v is the fraction of nodes it is connected to.4
SCLOS The inverse of the sum of all distances to all other nodes.4
SB The sum of the fraction of all-pairs shortest paths that pass through v.4
SE The centrality for a node based on the centrality of its neighbors.4
SCLUST The geometric average of the subgraph edge weights.4

Collaboration
networks

SKC Maximal subgraph that contains nodes of degree k or more.4
1And more keywords based on previous work [155, 154]
2And more keywords based on previous work [133]
3We discarded comments made by non-human participants and applied
the preprocessing in the text removing contractions, stop words, punc-
tuation, and replacing numbers
4The initial node is the committer of the revision and all other nodes are
the reviewers of each revision

may contain more information about a code change that may help reviewers
comprehend the change more easily.

From the social perspective, we extracted 20 features that charac-
terize the developer’s experience, collaboration network, and participation in
discussions. Moreover, these features were grouped into three dimensions: (i)
Developer’s experience comprises the features related to the previous ex-
perience of the code change owner. Previous studies [7, 98, 99] found that
developer experience is essential information for predicting design issues. Such
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studies claim that if a developer often submits changes in recent times prior
to the change, they will be more familiar with the recent developments of the
system, and thus the code change may be fewer design issues; (ii) Discussion
activity comprise the features of communication between developers and re-
viewers. In fact, classes having degraded symptoms can create more discussion
among the reviewers [32, 136]. As well as, discussions with a high number of
comments around code changes would find possible design symptoms, improv-
ing or maintaining the quality; and (iii) Collaboration networks consists of
features of social networks. Previous studies [97, 98, 111] found that collab-
oration factors (i.e., level of participation within the system) could influence
code review outcomes. For this reason, we constructed a network based on the
collaboration of owners and reviewers to use the features proposed by [97].

4.3.6
Development of the Impactfulness Prediction Models

We experimented with six different (binary classification) supervised ML
algorithms: Logistic Regression, Naive Bayes, SVM, Decision Tree, Random
Forest, and Gradient Boosting. We chose to use these algorithms to classify
whether a code change is impactful or not since it provides an intuitive and
easy to explain classification model [78].

Training and testing the models. We trained and tested the models
as follows. Firstly, we collected the design (un)impactful changes instances for
a given system. We merged them into a single dataset, where design impactful
changes instances are marked with a true value, and design unimpactful
changes instances are marked with a false value. Secondly, before training
the models, we dealt with imbalanced data, a common issue with software
engineering data [103]. In our case, the number of design impactful changes
instances varies; i.e., the design impactful changes instances might be greater
than or smaller than the number of unimpactful ones. To that end, we relied
on the under-sampling algorithm, which randomly selects instances of the
oversampled class. Thirdly, we scaled all the features to a [0, 1] range to speed
up the learning process of the algorithms [118]. Fourthly, we used the grid
search to tune the hyperparameters of each model using five folds. Grid search
is an exhaustive search that examines all of the combinations of a specified set
of candidate settings to find the best combination [115].

Finally, to train the model, we employed a 10-fold cross-validation
strategy using the hyperparameters established by the search [116]. This
strategy randomly partitions the dataset into 10 folds of equal size, in which
each fold has the same proportion of the various criticality classes. A single fold
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is then used as a test set, while the remaining ones are employed for training
the model, i.e., they are independent of each other.

Performance evaluation. We evaluated the performance of each gen-
erated model, by analyzing confusion matrices, obtained from the testing strat-
egy described above, and reporting the values of well-known measures [130].
Precision is the percentage of detected code changes that are actually impact-
ful (Pr = T P

T P +F P
). Recall is the percentage of correctly predicted impact-

ful design change relative to all of the changes that are actually unimpactful
(Re = T P

T P +F N
). The F1-score (F1) is the harmonic mean of precision and re-

call. Additionally, to mitigate the limitation of choosing a fixed threshold when
calculating precision and recall, we compute the Area Under the ROC Curve
(AUC) values. AUC is computed by measuring the area under the curve that
plots the true positive rate against the false positive rate, while varying the
threshold that is used to determine if a design change is predicted as impactful
or unimpactful.

Replication package. All data described previously, features used for
training and testing the ML algorithms, hyperparameters analyzed, generated
ML models, as well as the confusion matrix and statistical analysis are available
in [58].

4.4
Results and Discussions

4.4.1
Design Impactful Changes vs. Unimpactful ones

To answer RQ1, we used the Wilcoxon Rank Sum Test [105] and the
Cliff’s Delta (d) measure [107] to verify which metrics are able to discriminate
between impactful and unimpactful design changes. To this end, we explore
each metric described in Section 4.3.5. The Cliff’s Delta (d) measure [107]
shows how strong is the difference between design impactful changes and
unimpactful ones in terms of the analyzed metrics. Since we are performing
multiple comparisons, we need to adjust the p-values to consider the increased
chance of rejecting the null hypothesis simply due to random chance. To do
so, we apply the widely used Bonferroni correction [106], which controls the
familywise error rate. For this method, we consider that each system is a family,
which means that we perform the correction in the p-values of the features at
the system level.

Table 4.5 shows the results obtained for coarse- (CG) and fine-grained
(FG) smells, where the 1st column contains the type of metric while the
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2nd column shows the evaluated metric. The 3rd to 16th columns show the
Wilcoxon Test and d results for each system, each group of two columns
represents the results for CG and FG smells, respectively. Statistical significant
differences (p-value < 0.05) are highlighted as gray cells. To interpret the Cliff’s
Delta (d) effect size, we employ a well-known classification [108], that defines
four categories of magnitude, which are represented in Table 4.5: negligible
(without symbol), small (*), medium (**), and large (***). The positive d
magnitudes are represented by the (+) symbol and the negative ones are
represented by the (−) symbol.
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Table 4.5: Statistical Significance of the Wilcoxon Rank Sum Test and the Cliff’s Delta (d) for Coarse and Fine-grained Smells
Dimension Metric spymemcached java-client jvm-core platform.ui jgit egit linuxtools all

CG FG CG FG CG FG CG FG CG FG CG FG CG FG CG FG

Developer’s
Experience

NC (−) (−) (−) (−) (−) (−)* (−) (−) (−) (−) (−) (−)* (−) (−) (−) (−)
NRC (+) (−) (−) (−) (−)* (−) (−)* (−)* (−) (−) (−) (−) (−) (−) (−) (−)
NDC (+)* (+) (+)* (+)* (+)** (+)** (+)* (+)* (+)* (+)* (+)* (+)* (+)* (+)* (+)* (+)*
NR (−) (−) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (−) (−) (+) (+)
MR (−) (−) (+) (+) (+) (−) (+) (+) (−) (+) (−) (−) (−) (−) (−) (−)
RMR (−)* (−) (−) (+) (+) (+) (+) (+) (+) (+) (−) (−) (−) (−) (−) (+)
DMR (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+)

Discussion
Activity

NIC (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+)
NWIC (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+)
PWIC (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+)
NGC (−) (−) (+) (−) (−) (−) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+)
NWGC (+) (+) (+) (+) (+) (−) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+)
PWGC (+) (+) (+) (+) (+) (−) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+)
DL (+) (+) (+) (+) (−) (−) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+)

Collaboration
Networks

SD (−)* (+) (−) (−) (−) (−) (−) (−) (−) (−) (−) (−) (−) (−) (−) (−)
SCLOS (−)* (+) (−) (−) (−) (−) (−) (−) (−) (−) (−) (−) (−) (−) (−) (−)
SB (−) (−) (−) (−) (+) (+) (−) (−) (−) (−) (−) (−) (−) (−) (−) (−)
SE (−)* (−) (−) (−) (−) (+) (−) (−)* (−) (−) (−) (−) (−) (−) (−) (−)

SCLUST (+)* (+) (+) (−) (−) (−) (+) (+) (−) (−) (−) (−) (+) (+) (+) (+)
SKC (+)* (+) (−) (−) (−) (−) (−) (−) (+) (+) (+) (+) (+) (−) (+) (−)

Size

NLA (+)*** (+)*** (+)*** (+)*** (+)*** (+)*** (+)*** (+)*** (+)*** (+)*** (+)*** (+)*** (+)*** (+)*** (+)*** (+)***
NLD (+)* (+) (+)* (+)** (+)** (+)*** (+)* (+)* (+) (+) (+)* (+)* (+)** (+)** (+)* (+)*

CHURN (+)*** (+)*** (+)*** (+)*** (+)*** (+)*** (+)*** (+)*** (+)*** (+)*** (+)*** (+)*** (+)*** (+)*** (+)*** (+)***
NFA (+)*** (+)* (+)*** (+)** (+)*** (+)*** (+)*** (+)* (+)*** (+)* (+)*** (+)* (+)*** (+)* (+)*** (+)*
NFD (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+)

Diffusion

NFC (+)** (+)* (+)** (+)** (+)*** (+)*** (+)* (+)* (+)* (+)* (+)** (+)** (+)** (+)** (+)** (+)**
ND (+)*** (+)** (+)*** (+)*** (+)*** (+)*** (+)*** (+)** (+)** (+)** (+)*** (+)** (+)*** (+)** (+)*** (+)**
ME (+)*** (+)** (+)*** (+)*** (+)*** (+)*** (+)*** (+)** (+)** (+)** (+)*** (+)** (+)*** (+)** (+)*** (+)**

NLANG (+) (+) (+)* (+)* (+)* (+)* (+)* (+)* (+)* (+)* (+)* (+)* (+)* (+)* (+)* (+)*
NFT (+) (+) (+) (−) (+) (+) (+)** (+)* (+)* (+) (+)*** (+)* (+)** (+)* (+)** (+)*

Complexity
NSA (+)*** (+)*** (+)*** (+)*** (+)*** (+)*** (+)*** (+)** (+)*** (+)*** (+)*** (+)*** (+)*** (+)*** (+)*** (+)***
NSD (+) (+) (+)* (+)* (+)* (+)* (+)* (+)* (+) (+) (+)* (+)* (+)* (+)* (+)* (+)
NSU (+)* (+)* (+)* (+)* (+)** (+)** (+)* (+)* (+) (+)* (+)* (+)* (+)* (+)* (+)* (+)*

File History FD (+)*** (+)** (+)*** (+)*** (+)*** (+)*** (+)** (+)** (+)* (+)* (+)** (+)** (+)** (+)** (+)** (+)**
FM (+)** (+)* (+)** (+)** (+)** (+)** (+)** (+)** (+)* (+)* (+)** (+)* (+)** (+)** (+)** (+)*

Textual ML (−) (+) (+)* (+)** (+) (+)* (+)* (+)* (+)* (+)** (+)* (+)* (+)* (+)* (+)* (+)*
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We emphasize that RQ1 does not consider the FEAT, IMPR, IMPR,
DOC, and REFC metrics since theWilcoxon Test and the Cliff’s Delta measure
are not suitable for boolean metrics.

Correlation between inline comments and impactful changes.
Among all metrics in the dimension of discussion, we highlight those related to
inline comments, inline comments (NIC), words in inline comments (NWIC),
and percentage of words in inline Comments (PWIC). For CG smells, they were
statistically significant for most systems, except for the java-client (all three)
and jvm-core (PWIC) systems. Such metrics also showed positive magnitude
in all cases. This means that impactful changes, represented by both CG and
FG smells, are often associated with a higher volume of inline comments.
Nevertheless, the magnitude of these metrics was negligible in all cases. Thus,
we conclude that discussion activity metrics in isolation are not enough for
differentiating impactful changes.

Developer’s experience dimension. The directory changes (NDC)
metric presented consistent results in most systems both for CG e FG smells.
NDC was the only metric in the developer’s experience dimension that pre-
sented small and medium (and positives) magnitudes across all projects. This
result means that NDC is the best metric in its dimension for differentiating
impactful changes. Collaboration networks dimension. Results were simi-
lar on both CG e FG smells. Magnitudes were negative in 76% and 80% of cases
also for both smells. Such a result indicates that prior collaboration between
author and reviewers contributes to the production of changes that do not
impact the design. However, in many cases, the results were not statistically
significant.

Finding 9: The usefulness of the metrics from the discussion activity,
developer’s experience, and collaboration networks dimensions to differen-
tiate design impactful changes is limited. However, the number of directory
changes presents promising results.

Code metrics as strong indicators of impactful changes. The most
relevant metrics for distinguishing between impactful and unimpactful changes
were the ones related to code. Their results were not statistically significant
in only three cases for FG smells. Moreover, with the exception of the files
deleted (NFD) metric in the java-client system, all code metrics presented
positive magnitudes. Among all code metrics, we highlight the lines added
(NLA), changed lines (CHURN), and segments added (NSA) metrics, which
presented statistically significant results with large magnitude in all cases, for
both types of smells. If we restrict our analysis to CG smells, the files added
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(NFA), segments deleted (NSD), and modify entropy (ME) metrics also stand
out. The highlighted metrics are closely related to the size (NLA, CHURN,
NFA) and complexity (NSA, NSD, ME) of the changes. Thus, such metrics
can be used by reviewers to decide when a change requires more attention to
the design impact.

Textual dimension. The message length (ML) metric showed statis-
tically significant results with small or medium positive magnitudes in most
cases. We conjecture that this is because changes with detailed descriptions
tend to be more complex, leading to a higher impact on design. File history
dimension. The file developers (FD) and file modifications (FM) metrics,
showed statistically significant results with positive magnitudes. In this case,
the FD metric showed medium or large magnitudes in most cases. This result
suggests that the more people interacting with a file set, the greater the chance
that the next changes in such files will impact the design.

Finding 10: Code, textual, and file history dimensions contain metrics
that are relevant to differentiate impactful changes. The most relevant
ones can be combined to predict changes that require more attention to
design.

4.4.2
ML Performance for Predicting Design Impactful Changes
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Table 4.6: Performance of Using Different Learning Algorithms to Predict Design Impactful Changes
Coarse-grained Smells

SVM (linear) Decision Tree Random Forest Naive Bayes (gaussian) Gradient Boosting Logistic RegressionSystem Pr Re F1 AUC Pr Re F1 AUC Pr Re F1 AUC Pr Re F1 AUC Pr Re F1 AUC Pr Re F1 AUC
spymemcached 0.77 0.55 0.64 0.69 0.92 0.93 0.92 0.92 0.96 0.93 0.94 0.95 0.84 0.28 0.42 0.61 0.94 0.94 0.94 0.94 0.80 0.62 0.69 0.73
java-client 0.80 0.73 0.76 0.77 0.96 0.95 0.96 0.96 0.97 0.97 0.97 0.97 0.88 0.41 0.56 0.68 0.97 0.95 0.96 0.96 0.80 0.74 0.77 0.78
jvm-core 0.85 0.76 0.80 0.81 0.95 0.96 0.95 0.95 0.97 0.96 0.96 0.96 0.68 0.92 0.78 0.73 0.96 0.96 0.96 0.96 0.85 0.80 0.82 0.83
platform.ui 0.78 0.51 0.62 0.68 0.90 0.93 0.92 0.92 0.94 0.95 0.94 0.94 0.59 0.88 0.67 0.61 0.93 0.95 0.94 0.94 0.71 0.65 0.68 0.69
egit 0.76 0.62 0.68 0.71 0.89 0.91 0.90 0.90 0.93 0.93 0.93 0.93 0.75 0.56 0.64 0.69 0.93 0.94 0.93 0.93 0.75 0.69 0.72 0.73
jgit 0.72 0.61 0.66 0.69 0.90 0.91 0.91 0.91 0.95 0.93 0.94 0.94 0.67 0.58 0.59 0.63 0.94 0.94 0.94 0.94 0.74 0.70 0.72 0.73
linuxtools 0.75 0.62 0.68 0.71 0.92 0.94 0.93 0.93 0.96 0.96 0.96 0.96 0.82 0.18 0.29 0.57 0.95 0.96 0.96 0.96 0.73 0.71 0.72 0.72
All 0.70 0.61 0.66 0.68 0.86 0.87 0.86 0.86 0.93 0.92 0.93 0.93 0.65 0.64 0.64 0.64 0.93 0.92 0.93 0.93 0.70 0.70 0.70 0.70
Average 0.77 0.63 0.69 0.72 0.91 0.93 0.92 0.92 0.95 0.94 0.95 0.95 0.74 0.56 0.57 0.65 0.94 0.95 0.95 0.95 0.76 0.70 0.73 0.74
Median 0.77 0.62 0.67 0.70 0.91 0.93 0.92 0.92 0.96 0.94 0.94 0.95 0.72 0.57 0.62 0.64 0.94 0.95 0.94 0.94 0.75 0.70 0.72 0.73

Fine-grained Smells
SVM (linear) Decision Tree Random Forest Naive Bayes (gaussian) Gradient Boosting Logistic RegressionSystem Pr Re F1 AUC Pr Re F1 AUC Pr Re F1 AUC Pr Re F1 AUC Pr Re F1 AUC Pr Re F1 AUC

spymemcached 0.89 0.80 0.84 0.85 0.95 0.96 0.95 0.95 0.97 0.97 0.97 0.97 0.92 0.38 0.53 0.67 0.97 0.97 0.97 0.97 0.90 0.82 0.86 0.86
java-client 0.84 0.74 0.79 0.80 0.90 0.95 0.92 0.92 0.94 0.97 0.95 0.95 0.92 0.50 0.64 0.73 0.93 0.96 0.95 0.95 0.84 0.76 0.80 0.81
jvm-core 0.89 0.74 0.81 0.82 0.93 0.96 0.95 0.94 0.96 0.97 0.97 0.97 0.80 0.76 0.77 0.78 0.95 0.97 0.96 0.96 0.88 0.77 0.82 0.83
platform.ui 0.80 0.55 0.65 0.71 0.92 0.96 0.94 0.94 0.96 0.97 0.97 0.97 0.75 0.44 0.50 0.62 0.96 0.97 0.97 0.97 0.79 0.66 0.72 0.74
egit 0.85 0.72 0.78 0.80 0.91 0.95 0.93 0.93 0.95 0.96 0.96 0.96 0.84 0.62 0.71 0.75 0.95 0.97 0.96 0.96 0.84 0.76 0.80 0.81
jgit 0.90 0.62 0.73 0.77 0.91 0.93 0.92 0.92 0.96 0.95 0.95 0.95 0.91 0.36 0.52 0.66 0.96 0.95 0.96 0.96 0.86 0.71 0.78 0.80
linuxtools 0.82 0.65 0.72 0.75 0.92 0.95 0.93 0.93 0.95 0.97 0.96 0.96 0.90 0.23 0.36 0.60 0.95 0.97 0.96 0.96 0.81 0.72 0.76 0.77
All 0.74 0.67 0.70 0.72 0.88 0.90 0.89 0.89 0.95 0.94 0.95 0.95 0.68 0.67 0.67 0.67 0.95 0.94 0.94 0.94 0.75 0.70 0.72 0.73
Average 0.84 0.69 0.75 0.78 0.92 0.95 0.93 0.93 0.96 0.96 0.96 0.96 0.84 0.50 0.59 0.69 0.95 0.96 0.96 0.96 0.83 0.74 0.78 0.79
Median 0.85 0.70 0.76 0.79 0.92 0.95 0.93 0.93 0.96 0.97 0.96 0.96 0.87 0.47 0.59 0.67 0.95 0.97 0.96 0.96 0.84 0.74 0.79 0.81
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We address RQ2, by reporting and comparing different models after the
10 stratified cross-fold executions. We apply stratified sampling in all the
cross-fold executions to make sure both training and test datasets contain
the same amount of design (un)impactful changes instances. Table 4.6 shows
the precision (Pr), recall (Re), F1-score (F1), and AUC values of each ML
algorithm for each target system and smell levels. The row “all” represents the
generated model, when training and testing in the entire dataset and using all
features.

The performance of ML algorithms for predicting design im-
pactful changes. Table 4.6 shows that for coarse-grained smells, the average
of precision values across models ranges between 0.74 and 0.95, while the re-
call values range between 0.56 and 0.95. Similarly, the F1-score values range
between 0.57 and 0.95, while the AUC values range between 0.65 and 0.95. A
similar observation applies when we consider fine-grained smells, in which the
average of precision, recall, F1-score, and AUC values ranges between 0.83 and
0.96, 0.50 and 0.96, 0.59, and 0.96, and 0.69, and 0.96, respectively.

To assess statistical differences between the models, we applied Friedman
non-parametric test [149] with Nemenyi’s post hoc multiple pairwise compar-
ison (p-value ≤0.05). We observed that both Random Forest and Gradient
Boosting outperformed the other ML models at coarse-grained (CG) and fine-
grained (FG) levels, with significant difference according to the statistical test.
Furthermore, both Random Forest and Gradient Boosting present a similar
performance, i.e., without a statistical difference, considering the CG level,
with a similar average of 0.95 for both F1 and AUC. However, with a slight
difference of 1% for the average of precision and recall values. A similar obser-
vation applies when at FG level. Moreover, to ascertain if the level of accuracy
is adequate, we compared our model performance results with other approaches
both for ML-based smell detection [147, 145] and code review analysis [148].
On average, our two best models achieved similar or better performance results
than those previous work.

Finding 11: Random Forest and Gradient Boosting are the most accu-
rate in predicting design impactful changes within code reviews. Both al-
gorithms achieve an average of F1-score of 0.95 and 0.96, for predicting
design impactful changes at a CG and FG level, respectively.
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4.4.3
The Role of Social and Technical Features as Predictors

We address RQ3, by investigating the performance of different feature
sets as a proxy to predict design impactful changes at CG and FG smell levels,
namely (i) social features only, (ii) technical features only, and (iii) social +
technical features together. Additionally, and given the great number of fea-
tures, we investigate the difference of the impactfulness prediction between to
use or not a step for feature ranking and selection. Instead of simply removing
the highly-correlated features by following a filtering method, we decided to
apply a wrapper method to feature selection. We applied feature ranking with
recursive feature elimination and cross-validated selection of the best number
of features for our data. For feature ranking and selection we used the RFECV
function available in the scikit-learn’s feature selection package [129]. We run
RFECV using 5-fold cross-validation and SVC linear as the estimator. After
the cross-validation process, and RFECV recommendations, three new sets,
namely feature selection sets, were generated, a set with 19, 9, and 40 fea-
tures respectively for the social, technical, and social + technical dimensions.
Similarly to RQ2, we check the statistical difference of the results using Fried-
man test [149] and Nemenyi’s post hoc multiple pairwise comparison, with a
confidence level of 95%.

The effectiveness of social and technical features as predictors
to design impactful changes. To evaluate the effectiveness of social and
technical features, we rely on the best ML algorithms, i.e., Random Forest and
Gradient Boosting, based on the RQ2 results. Table 4.7 shows the mean values
of precision (Pr), recall (Re), F1-score (F1), and AUC for both algorithms,
grouped by dimension and feature set.

We observed that social features for impactful changes, at both levels
of granularity, reached mean values of Pr, Re, F1, and AUC around 0.8. A
similar performance is reached when feature selection was used. Technical
features reach mean values of Pr, Re, F1, and AUC around 0.96 and 0.94 for
impactful changes at, respectively, coarse- and fine-grained levels. But we also
observed that the use of features selection at the coarse-grained level leads to a
performance reduction, decreasing values of Pr, F1, and AUC. The Friedman
test did not point a significant difference when using feature selection compared
to all features, as well as between the two levels of granularity, in the same set
of features. In summary, we can conclude that both sets of features are good
predictors. They reach values of Pr, Re, F1, and AUC ≥ 0.79 at both levels.
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Table 4.7: Performance of Social and Technical Features as Proxy to Predict
Design Impactful Changes

Random Forest
Coarse-grained Smells Fine-grained SmellsDimension Feature set Pr Re F1 AUC Pr Re F1 AUC

all features 0.80 0.81 0.81 0.80 0.79 0.79 0.79 0.79Social feature selection 0.80 0.81 0.81 0.80 0.79 0.79 0.79 0.79
all features 0.96 0.96 0.96 0.96 0.94 0.94 0.94 0.94Technical feature selection 0.90 0.93 0.91 0.91 0.94 0.94 0.94 0.94
all features 0.95 0.94 0.95 0.95 0.93 0.92 0.93 0.93Social + technical feature selection 0.87 0.91 0.89 0.88 0.93 0.92 0.93 0.93

Gradient Boosting
Coarse-grained Smells Fine-grained SmellsDimension Feature set Pr Re F1 AUC Pr Re F1 AUC

all features 0.82 0.83 0.82 0.82 0.80 0.81 0.80 0.80Social feature selection 0.81 0.83 0.82 0.82 0.80 0.81 0.80 0.80
all features 0.95 0.96 0.96 0.96 0.94 0.94 0.94 0.94Technical feature selection 0.90 0.92 0.91 0.91 0.94 0.94 0.94 0.94
all features 0.95 0.94 0.94 0.94 0.93 0.92 0.93 0.93Social + technical feature selection 0.88 0.91 0.90 0.89 0.93 0.92 0.93 0.93

Finding 12: Both social and technical features are effective as a proxy
to detect impactful changes. In this way, code review stakeholders may
choose the set of features to be used according to their interests and roles.

Social features vs. technical features vs. social + technical
features. The set of technical features are better predictors than the set
of social features in terms of Pr, Re, F1, and AUC for coarse-grained and
fine-grained smells, and both algorithms, with or without feature selection.
We observe a significant statistical difference between both sets. Nevertheless,
there is no statistical difference, in terms of performance, between technical
and social + technical sets. The combination of both kinds of features leads
to results that are statistically equivalent to the best results, obtained by the
technical feature set. This happens even for the set of social and technical
features together when the double number of features is used.

Finding 13: The use of technical features leads to the best results.
Moreover, such kind of features can be used in combination with social
features without reducing the performance of the ML algorithms.

4.4.4
The Best Features for Predicting Design Impactful Changes

We address RQ4, by reporting how often each feature appears among the
top-1 and top-5 most important features of all the generated models without
feature selection. To better understand the importance of social and technical
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features for predicting design impactful changes per symptom category, we
generate different sets of rankings. To this end, we vary the configuration of
each model according to the different feature sets, i.e., social features only,
technical features only, and both together, and reported the five most frequent
features per ranking and feature sets. We used scikit-learn’s implementations
to extract the feature importance of the SVM (linear), Decision Tree, Random
Forest, Gradient Boosting, and Logistic Regression models [129]. We highlight
that some models, e.g., SVM, might return the importance of a feature as a
negative number, indicating that the feature is important for the prediction of
the design unimpactful changes, in our case. Thus, we consider such a feature
also important to the models, and thus, we build the ranking using the absolute
value of feature importance returned by the models.

The best features using social and technical features in isolation
for predicting design impactful changes. Table 4.8 lists the ranking of the
best features across ML algorithms and systems grouped by smell category,
i.e., coarse-grained (CG) and fine-grained (FG) smells, and feature set, i.e.,
technical feature only, and social feature only. For each ranking, we show
the corresponding dimension (Dim.) and the frequency (Freq.) in which each
feature appears by feature set.

Table 4.8: The Ranking of the Most Important Features Across ML Algorithms
using Social and Technical Features in Isolation

Coarse-grained Smells
Technical Features Only Social Features OnlyRanking Dim. Feature Name Freq. Dim. Feature Name Freq.

Size # Lines Added 13 Dev Exp # Directory Changes 23
Size # Files Added 11 Disc Act # Inline Comments 5
Size # Changed Lines 6 Dev Exp # Changes 3
Complexity # Segments Added 2 Colab Net. Social Closeness 2

1

Diffusion # Changed Files 2 Dev Exp # Recent Changes 1
Size # Lines Added 29 Dev Exp # Directory Changes 31
Size # Files Added 28 Dev Exp # Changes 25
Size # Changed Lines 23 Dev Exp Merged Ratio 22
Complexity # Segments Added 20 Dev Exp # Recent Changes 20

5

Diffusion Modify Entropy 13 Dev Exp Recent Merged Ratio 11
Fine-grained Smells

Technical Features Only Social Features OnlyRanking Dim. Feature Name Freq. Dim. Feature Name Freq.
Size # Lines Added 16 Dev Exp # Directory Changes 28
Size # Changed Lines 10 Disc Act # Inline Comments 4
Complexity # Segments Added 6 Disc Act # Words in General Comments 1
File History # File Modifications 2 Disc Act % Words in General Comments 1

1

Diffusion # Changed Files 1 Disc Act Discussion Length 1
Size # Lines Added 30 Dev Exp # Directory Changes 33
Size # Changed Lines 23 Dev Exp # Changes 22
File History # File Modifications 23 Dev Exp # Recent Changes 22
Textual Message Length 17 Dev Exp Merged Ratio 20

5

Complexity # Segments Added 16 Disc Act # Inline Comments 11

By considering FG smells with technical features only, we observed
that features quantifying the size of the code changes such as, lines added
(NLA), and changed lines (CHURN) frequently appear in the top-1 ranking,
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followed by features that quantify complexity (segments added (NSA)), history
information about files modified (file modifications (FM)), and diffusion of
a change (changed files (NCF)). A similar observation applies in the top-5
ranking, but with the presence of one textual feature, message length (ML),
that appears 17 times. Interestingly, when we compare both types of smells, we
observed that NLA, CHURN, NSA, NCF also appear as important for both
symptom categories in the top-1 and top-5 rankings, except for the features
files added (NFA), and modify entropy (ME) that only appear for CG smells.

On the other hand, when we consider social features only: for FG smells,
we observed that the feature directory changes (NDC), that quantifies the
developer’s experience in terms of the number of prior code changes submitted
by the owner that contains at least one directory affected by the current
submitted code change, is the most important social feature in the top-
1 ranking appearing 28 times across models. Next, less frequently, features
that quantify inline comments (NIC) made by reviewers on the code change
submitted by the owner, and features that quantify discussion activities among
the owner and reviewers, such as, # words in general comments (NGC), %
words in general comments (PWGC), and discussion length (DL) also appear
as important features.

Interestingly, by looking at the top-5 ranking, we observed that 4 out of
7 (57%) features that quantify different aspects of the developer’s experience
are considered as important across models, followed by the NIC that appears
11 times. By comparing both categories, we observed that NDC keeps its
importance in the top-1 and top-5 rankings. Finally, two social features appear
as important for CG smells, social closeness (SCLOS), and recent merged ratio
(RMR). These observations also reinforce that senior developers should be
allocated as reviewers to keep the quality of code review high [136, 40] and
promote the knowledge transfer along revisions [14, 135].

Finding 14: In isolation, social features that quantify the developer’s
experience and discussion activities are indeed considered important across
models in both smells categories. Also, as expected, technical features that
quantify size, complexity, and diffusion of the code changes are considered
important across all models.

The best features using social and technical features together
for predicting design impactful changes. Table 4.9 also lists the rank-
ing of the best features across ML algorithms grouped by CG and FG smells.
However, in this table, we consider social and technical features as a single fea-
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ture set. We also show the corresponding dimension (Dim.) and the frequency
(Freq.) in which each feature appears.

Table 4.9: The Ranking of the Most Important Features Across ML Algorithms
Using Social and Technical Features Together

Coarse-grained Smells
Ranking Dim. Technical features Freq. Dim. Social features Freq.

Size # Lines Added 12 - - -
# Files Added # Files Added 12 - - -
Size # Changed Lines 7 - - -
Diffusion # Changed Files 1 - - -

1

Diffusion Modified Entropy 1 - - -
Size # Lines Added 29 Dev Exp # Changes 2
Size # Files Added 29 Dev Exp # Recent Change 2
Size # Changed Lines 21 Dev Exp Recent Merged Ratio 2
Complexity # Segments Added 19 Dev Exp # Directory Changes 1

5

Diffusion Modified Entropy 13 - - -
Fine-grained Smells

Ranking Dim. Technical features Freq. Dim. Social features Freq.
Size # Lines Added 12 - -
Size # Changed Lines 12 - -
Complexity # Segments Added 7 - -
File History # File Modifications 2 - -

1

Diffusion # Changed Files 1 - -
Size # Lines Added 30 Dev Exp # Changes 2
Size # Changed Lines 26 Dev Exp # Recent Change 2
Complexity # Segments Added 18 Dev Exp Recent Merged Ratio 2
Diffusion # Languages 17 Disc Act % Words in General Comments 1

5

File History # File Modifications 13 Dev Exp # Directory Changes 1

For FG smells with social and technical features aggregated, we observe
that the same technical features listed in Table 4.8 appears in the top-1 and
top-5 rankings, i.e., when we consider the technical features in isolation, the
same features also appear as the most important features for FG smells, except
for the message length (ML), that only appears when the technical features
are in isolation, and the number of languages (NLANG) feature, which only
appears in the rankings with the combined features. Both of those features
appear 17 times each in their respective top-5 rankings. We also observed that
when the social and technical features are considered together, social features
only appear in the top-5 ranking.

This result indicates that technical features, when combined with social
ones, tend to be the most important features across models, especially in
the top-1 ranking. However, social features that appear in the top-5 ranking
are majority features that quantify the developer’s experience. This result,
reinforces our previous finding, on the importance of the developer’s experience
to predicting fine-grained design impactful changes.

We also observed similar behavior for CG smells, in which the same set of
technical features when we considered the technical features in isolation, also
appear as the most important features across models. The exception to this is
the feature modified entropy (ME), which appears 1 time in the top-1 ranking
in Table 4.9. Finally, similar to FG smells the social features only appear in
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the top-5 ranking, with the prevalence of features that quantify the developer’s
experience.

Finding 15: Technical features tend to be considered the most important
features across models when compared with social features. However,
social features that quantify the developer’s experience are also considered
important across models in both symptom categories.

Some features never appear in any of the rankings. Considering
the full rankings of features importance, we observed that for both FG and
CG smells, when technical and social features are considered in isolation, the
technical features that capture textual characteristics of the commit message
such as, has bug (BUG), has feature (FEAT), has improvement (IMPR), has
document (DOC), and has refactor (REFC) do not appear even when we
consider the top-5 ranking. A similar observation applies when we consider
all social and technical features together, except for the feature FEAT. On
the social features, for both smell types the features directory merged ratio
(DMR) and social betweenness (SB) never appear in the top-1 and top-
5 feature importance ranking. Additionally, the feature percentage words in
general comments (PWGC) also does not appear in the rankings for CG smells.

On the other hand, when we combine all social and technical features
together, eight social features do not appear among the rankings for both
symptoms category. These features, four are from the collaboration network
dimension, social closeness (SCLOS), social clustering (SCLUST), social eigen-
vector, and social betweenness (SB). Another group of three features that do
not appear are from the discussion activity dimension: inline comment (NIC),
general comments (NGC), and discussion length (DL). Finally, reviews (NR)
from the developer’s experience dimension also does not appear. Specifically for
FG smells, we observed that merged ratio (MR), recent merged ratio (RMR),
directory merged ratio (DMR), social k coreness (SKC), # words in inline
comments (NWIC), # words in general comments (NWGC), and % words in
general comments (PWGC) also never appear in the rankings.

Finding 16: Features from the textual dimension consistently did not
appear in any of the rankings when technical features are used in isolation.
Conversely, when both types of features are used in conjunction, features
related to collaboration networks and discussion activity tend to not
appear for both symptom categories.
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4.5
Threats to Validity

Construct and Internal Validity. The precision and recall of degra-
dation symptoms detection may have influenced our results. We mitigate this
threat by selecting a detection tool, successfully used in recent studies on de-
sign degradation [4, 52, 136, 32], and previous work [114] indicated a precision
of 96% and a recall of 99%. Moreover, there is evidence that developers tend to
refactor code elements with a high density and diversity of the selected symp-
toms [29]. Although, there are more instances of design unimpactful changes
in our dataset we mitigate this imbalanced dataset by removing instances from
the over-represented class through random under-sampling strategy. Moreover,
the selection of the ML algorithms and their parameter settings may affect the
accuracy and influence interpretability. We mitigate this threat by selecting the
most widely used interpretable ML algorithms and, for a fair comparison, we
searched for their best parameters through an extensive hyperparameter search
via grid search, and 10-fold cross-validation strategy. Finally, we selected and
computed a wide number of social and technical features that helped us mea-
sure different social and technical dimensions of the changes involved in each
code revision, e.g., developer experience, and file history. The rationales for
using metrics are supported by prior studies, e.g., [5, 97, 110, 111]. We wrote
scripts to automate compute these metrics, and all implementations were val-
idated by three paper authors.

Conclusion and External Validity. About the descriptive analysis,
four paper authors contributed to the analysis of design (un)impactful changes.
For the statistical analysis, we rely on theWilcoxon Rank Sum Test, Bonferroni
correction, and Cliff’s Delta (d) measure to verify which metrics are able to
discriminate between (un)impactful design changes. We also computed largely
used performance measures [130], precision, recall, F1-score, and AUC score.
Furthermore, we rely on the Friedman non-parametric test, and Nemenyi-tests
to avoid subjective opinion regarding the best accurate model and the role of
social and technical features as predictors.

About the feature importance, our ML pipeline does not currently have
a way to get the feature importance of Naive Bayes, but we have no reason to
believe the lack of this model affected the conclusion of RQ4. We are aware that
there is an inherent threat to transferring our findings to other systems, i.e.,
our results may be subject to the degradation characteristics of these specific
systems. However, we focused on seven systems to be able to make robust and
reliable statements about if learning approaches can be used in such settings.
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4.6
Final Remarks

In summary, our main findings pointed out that: (i) both social and
technical features are able to distinguish between design impactful changes
and unimpactful ones; (ii) Random Forest and Gradient Boosting are the most
accurate algorithms; and (iii) both social and technical features are effective
as a proxy to predict impactful changes. Our findings also provide insights for
new studies and be the basis for tool builders creating a new generation of
tools to aid developers in automatically predicting design impactful changes
during code reviews. We also show that: (i) existing detection tools should
be more interactive, in a stepwise manner, to anticipate, find, and remove
signs of degradation before finishing a review; (ii) In addition to only technical
features, the combination with social features is promising for predicting design
(un)impactful changes; and (iii) qualitative studies should be performed to
explain other aspects governing the decision-making process discriminating
and predicting design impactful changes.

4.7
Summary of Chapter 4

In order to address our second research problem (see Section 1.2),
this chapter presented a study to investigate the role of social aspects in
distinguishing and predicting (un)impactful design changes. To this end,
we performed a large-scale investigation by analyzing 57,498 reviewed code
changes from seven open-source systems. We reported an investigation on the
prediction of design impactful changes in modern code review using technical
and social aspects.

The study was based on the extraction and assessment of 41 different met-
rics and corresponding features associated with social and technical aspects.
We identified which metrics are able to distinguish between design impactful
changes and unimpactful ones (Section 4.4.1). We also evaluated the use of
six ML algorithms to predict design impactful changes (Section 4.4.2). Next,
we investigated the performance of different feature sets (social features only,
technical features only, and social and technical features together) as a proxy to
predict design impactful changes (Section 4.4.3). Finally, we investigate what
features are the best indicators of impactful design changes (Section 4.4.4).

In the next chapter, we revisit the main doctoral thesis contributions and
present implications, new challenges and opportunities for improvement. We
also present possible future work that we identified as needed emerged along
the studies conducted in the context of this Doctoral thesis.
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5
Conclusion and Future Work

As mentioned in Chapter 1, the software design is a key concern in
code review through which developers actively discuss and improve each
code change. Additionally, code review is predominantly a cooperative task
influenced by both technical and social aspects. Consequently, these aspects
can play a key role in how software design degrades as well as contributing to
accelerating or reversing the degradation during the process of each single code
change’s review. However, we had limited knowledge about the real impact of
code reviews and their practices on design degradation over time. For instance,
we did not know how the process of design degradation evolution is impacted:
(i) within each single review, and (ii) across multiple reviews.

Consequently, one can not understand how certain code review practices
– including review intensity, developer participation, and the review duration
– consistently reduce or further increase degradation as the software project
evolves (Research Problem 1). We also did not know to what extent social
and technical aspects involved during the code review process are related to
either the reduction or the increase of design degradation. Additionally, there
is no knowledge whether the social aspects represented as features in ML
techniques can contribute to effective predictions of design impactful changes
combining social and technical features for predicting design (un)impactful
changes (Research Problem 2).

Therefore, the lack of knowledge about the topics aforementioned led us
to understand how to support design-driven code reviews and how technical
and how social aspects can be positively explored to better support the code
review process. In this context, the goal of this thesis was to step-wisely
understand how to support design-driven code review and how contextual
information – technical and social – can be addressed to support the code
review process. To achieve such a goal, we conducted two large empirical
studies, which are summarized as follows.
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5.1
Revisiting the Thesis Contributions

In our quest to unveiling the social and technical facets of design
degradation in modern code review, our first step was to investigate and
provide empirical evidence of the impact of modern code review and their
practices on design degradation. Thus, we conducted a retrospective study
(Chapter 3) to answer the following research question presented in Section 1.3:
To what extent do modern code review impact the design degradation evolution?

To answer this research question we analyzed 14,971 code reviews from
seven systems of two large open source communities. In this analysis, we
explored the evolution of two degradation characteristics: density and diversity
of symptoms. We analyzed such characteristics in the context of two categories
of degradation symptoms: fine-grained and coarse-grained smells [30]. Then,
we analyzed the impact on design degradation even in the presence of explicit
intent of improving the design. This analysis also includes the presence of
explicit design discussions along with the revisions of a review.

Finally, we investigated how degradation characteristics evolve along with
the revisions that occur along each code review. To this end, we identified and
investigated four different evolution patterns for degradation characteristics
(i.e., density and diversity). As a result of this analysis, we provided new in-
sights on the design degradation evolution along the reviewing process. In
addition, we observed that certain code review practices can be used as indi-
cators of increased design degradation. In this context, the first contribution
of this thesis is:

First Contribution. Empirical evidence that characterizes how the
process of design degradation evolves within each review and across
multiple reviews. This knowledge includes the influence of certain code
review practices on combating or even accelerating design degradation.

Our results indicate that in most cases that code reviews had little or no
impact on software design degradation. Moreover, by analyzing different de-
sign degradation pattern evolution during the revisions of each single review,
we found the existence of a wide fluctuation of design degradation. This fluc-
tuation means that developers are both introducing and removing symptoms
along a single code review. However, at the end of the review, such fluctuations
often result in the amplification of design degradation even in the context of
reviews with an explicit design concern. This result led us to investigate a
mechanism to better support developers on the prevention of design problems
during code review.
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In this follow-up study (Chapter 4), we aimed to answer the following
research question:To what extent do social aspects contribute to distinguishing
and predicting design impactful changes in a modern code review? To answer
this research question, we reported an investigation on the prediction of design
impactful changes in modern code review. We extracted and assessed 41
different features based on both social and technical aspects of the changes
involved in each revision of a code review. Based on different features set,
we evaluated the use of interpretable Machine Learning (ML) algorithms to
predict design impactful changes. Finally, we evaluated the predictive power of
the selected features with those algorithms to assist developers on determining
whether a code change is impactful.

As a result of this investigation, we observed that Random Forest and
Gradient Boosting are the best algorithms. We also observed that the use of
technical features results in more precise predictions. However, the use of social
features alone, which are available even before the code review starts (e.g., for
team managers or change assigners), also leads to highly-accurate prediction.
Therefore social and/or technical prediction models can be used to support
further design inspection of suspicious changes early in a code review process.
Thus, the second contribution of this thesis is:

Second Contribution. A seminal report on the effect of certain technical
and socials aspects on distinguishing and predicting design impactful
changes in code review

In addition to the previous contributions, this doctoral thesis provides
several insights about the use of different metrics that can be used to quantify
both social and technical aspects that emerge during code reviews. In other
words, we provide a set of metrics/features that can be by other researchers
to reveal and understand design degradation that affects the quality of design
during code reviews. Thus, our third contribution of this thesis was:

Third Contribution: Set of social and technical aspects that emerge
during code reviews. We provide a catalog with more than 30 metrics in
Chapters 3 and 4 that can be used by other researchers to investigate
different phenomena that affect the quality of design during code reviews.

Finally, as mentioned in Chapter 1 an essential and good practice
of any scientific research is that studies must be replicable. Thus, in this
doctoral thesis, we provided the full replication packages of each study
that we have performed. The replication packages were available on Zenodo
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(https://zenodo.org/), an online repository hosted at CERN which allows shar-
ing publications and supporting data (see Table 1.2). Therefore, in this doctoral
thesis we provide enriched datasets that allow researchers to investigate the
context behind design degradation during the code review process. For each
dataset, we make available all data collected, together with the definition of
metrics, features, and statistical tests, and scripts.

Fourth Contribution: A novel datasets that allow researchers to in-
vestigate the context behind design degradation during the code review
process.

In summary, we highlight that this research contains four main novel
contributions, which map onto the research questions and are related to the
artifacts generated along our research: (i) an empirical characterization of
modern code review impact on design degradation; (ii) A seminal report
on the effect of certain technical and socials aspects on distinguishing and
predicting design impactful changes in code review; (iii) a catalog about
the effect of technical and socials aspects on design degradation during
code reviews; and (iv) A novel datasets that allow researchers to investigate
the context behind design degradation during the code review process. The
latter main contribution is crosscutting in Chapters 3 and 4. Therefore, the
contributions listed here can advance both state-of-the-art and state-of-the-
practice. Researchers and industry practitioners can use the discussions in this
thesis to define mechanisms that drive news solutions for supporting developers
during code reviews. Finally, The knowledge provided here can help researchers
in building more suitable mechanisms that are aligned with how developers
perform code reviews in practice.

5.2
Thesis Delimitations

This doctoral thesis focused on the analysis of social aspects and their
influence on design degradation. Given the wide scope of social aspects,
they have been investigated in many disciplines, including social sciences and
psychology. Thus, we need to describe what are self-imposed boundaries set
by the context of the field of software engineering studies, which also applies
to this doctoral research.

Delimitation 1: The measurement of social aspects during code reviews
using only social metrics. To gain the perspectives of social aspects concerning
design degradation during code reviews, in this doctoral thesis, we measure
social aspects based on the computation of metrics collected from software
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repositories only. Such metrics were identified in previous studies [7, 32, 97,
98, 99, 111] in the software engineering field or were defined during this
doctoral thesis scope. Thus, the use of metrics only to quantify social aspects
in distributed software development does not allow the researcher to gain other
unmeasurable views of those social aspects through the code review process.

Delimitation 2: A limited view of software engineering about social
aspects. The observations obtained in the scope of this doctoral thesis are
strictly related to a narrow subset of social aspects, and their definitions are
constrained here, take into consideration broader definitions of these aspects
in the social sciences and psychology. Thus, if we have considered the view of
professionals in the social sciences and psychology other aspects or relations
could be discovered and explored in this doctoral thesis. However, we decided
to focus on measurable elements of collaborative software development that
can be realistically obtained from software repositories. The reason is that
prediction models must remain simple and applicable in distributed software
development. In this case, the communication and cooperation of software
developers and reviewers are only based on discussions in online development
platforms.

5.3
Thesis Implications

This doctoral thesis provides several findings which lead to implications
for researchers, tool developers, and practitioners. Those main implications are
discussed as follows.

Implication 1: Developers should be aware of code review practices that
can lead to design degradation. During code reviews developers can modify
the source code with different proposes, such as, adding a new feature or
improving the quality of source code. As reported in Chapter 3, exist a wide
range of code review practices may influence the increase or decrease the risk
of design degradation. Our results show that practices such as long discussions
and a high rate of review disagreement are often associated with a higher
risk of software degradation. Conversely, reviews with active engagements of
multiple reviewers tend to exert a risk-decreasing effect on design degradation.
Therefore, the code review stakeholders should give additional attention to
certain code review practices and their effect on design degradation.

Implication 2: The developers need to promote good design discussions
during code reviews. In complement to the previous implication, we also
observed that reviews with explicit intents of design improvement tend to
reduce or avoid design degradation. However, the sole presence of design
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discussions is not enough for avoiding design degradation. Such results indicate
that monitoring mechanisms could be applied to detect the presence of design
discussions. In ongoing design discussions that are not reflecting on a decrease
of design degradation, developers and reviewers should be warned. Moreover,
reviewers and developers, need to double-check the occurrence of constructive
comments, providing actionable suggestions to mitigate the issues, without
neglecting the focus on design improvement.

Implication 3: The combination of social and technical features is
promising for predicting design (un)impactful changes. In Chapter 4, we show
that the existing tools for detecting design smells tend to ignore the presence
and influence of social aspects on the prediction of design (un)impactful
changes. On one hand, our results show that indeed the use of technical
features results in precise predictions. On the other hand, the use of social
features alone, which are available even before the code review starts (e.g., for
team managers or change assigners), also leads to highly-accurate predictions.
Therefore, social and/or technical prediction models can be used to guide
further design-driven reviewers of suspicious changes early in a code review
process.

Implication 4: Existing detection tools should be more interactive within
code reviews. The findings reported in Chapters 3 and 4 suggest that there is
a need for tools that support code reviewers in a stepwise manner within a
single code review. In fact, existing code review tools, such as Gerrit, lack
mechanisms that enable the reviewers and code authors in along the revisions
of a code review, to anticipate, find and remove signs of degradation before
conducting a review and submitting a change request. These mechanisms
could rely on their current diff visualization to alert developers about the
existence of degradation symptoms before the start of the next code revision.
The alerts could be explained in terms of technical and social metrics that
exceed previously tailored or automatically computed outliers.

5.4
Future Work

New challenges and opportunities have emerged along the studies con-
ducted in the context of this thesis. Based on them, we describe further di-
rections for future work according to two perspectives: (i) strictly related to
this doctoral thesis and its delimitations, and (ii) beyond the delimitations
presented in Section 5.2.

First, We present below the recommendations of future work strictly
related to this doctoral thesis and its delimitations as follows.
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Future work 1: Automatic classification of a design discussion in code
reviews. In Chapter 3, we manually analyzed data from code review (commit
messages, discussions between developers, and the source code) to classify a
code review as design-related or design-unrelated. We identified the intent of
developers in improving the structural design of their system. Although we
have following a rigorous method to perform the manual analysis, this method
does not scale either for a study of larger proportions or for piratical settings
in software projects. Hence, the automatic classification of the code review in
design-related or design-unrelated would greatly enhance empirical studies and
tool support such as those discussed in this thesis.

Future work 2: Evaluate the effect of code reviews on other types of
degradation symptoms, and different characteristics of design degradation. In
Chapters 3 and 4 we used two types of degradation symptoms (fine-grained
smells and coarse-grained smells) as a proxy to measure the structural design
degradation. Additionally, we used the density and diversity of symptoms as
characteristics of design degradation. However, other types and characteristics
of degradation symptoms have been proposed in the literature, such as archi-
tectural smells or internal quality attributes. Hence, future studies could build
upon the methodology and data we made available in this thesis to extend
such studies by incorporating different degradation symptoms.

Future work 3: Expand the social and technical aspects and dimensions
to understand their role on software degradation. In Chapters 3 and 4, we
have used different metrics and features grouped into different dimensions
to investigate how different aspects influence the design degradation in code
reviews. Even though we have used a large set of metrics/features grouped into
different dimensions, further studies can extend it or use a quite different set in
order to identify different correlations that can reveal other possible influences
on design software degradation.

Future work 4: Qualitative studies should be performed to explain as-
pects governing the decision-making process on the discrimination and predic-
tion of design impactful changes. Both studies presented in Chapters 3 and 4
are quantitative studies. Thus, our results and implications are based on quan-
titative data collected from open source repositories. Hence, future studies may
use the insights from this doctoral research to design qualitative studies with
developers to better explain the influence of aspects governing the decision on
design impactful changes.

Future work 5: Integration of our prediction model into a code review
platform. In Chapter 4, we proposed and investigated a prediction model based
on the use of social and technical aspects to make developers aware about the
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design impact of their code changes during the code review process. In Chap-
ter 4, we present a set of features that are able to distinguish (un)impactful
design changes, including the best indicators and best combinations of feature
sets. All this knowledge could be used to integrating a prediction model in a
code review platform, such as Gerrit and GitHub to be used by practitioners
during the code review process. The integration should take into consideration
our findings to determine when and how developers should be warned.

We presented the suggestion of future work beyond the thesis delimita-
tions as follows.

Future work 6: Exploring the coordination and collaboration aspects
involved during the code review process. In Chapters 3 and 4, we explore
different types of metrics that help us to quantify social aspects. Despite we
have grouped these metrics into different dimensions to capture the social
aspects, another approach could be explored in future work. For instance,
social aspects could be defined and structured in terms of the 3C Model of
collaboration [171] or the Teamwork Quality model [172]. The 3C model is
based on the conception that to collaborate, the members of a group need to
communicate, coordinate, and cooperate [171]. Therefore, future studies could
use the 3C model as the basis for modeling and developing coordination and
collaboration strategies during the code review process. Since we do not cover
all aspects and dimensions of the 3C model.

Future work 7: Exploring the reason behind the disagreement between
reviewers. In Chapter 3, we have observed that a high disagreement among
reviewers and long discussions have a risk-increasing effect on software design
degradation. However, these results were obtained using statistical analysis and
a lightweight manual validation only (available in our replication packages).
Hence, future studies should perform a more in-depth qualitative analysis con-
cerning the different scenarios of disagreement among reviewers. For instance,
future studies can use the reviews tagged as a high disagreement and observe
forms of interactions among reviewers. One could analyze if these disagree-
ments and interaction forms are related to particular degraded code elements.

Future work 8: Conducting empirical studies using psychometric in-
struments to measure the social aspects during code review activities. Although
the software development activities, including code reviews activities, is an in-
herently human activity, research in software engineering has long focused on
building on processes and tools, without taking into consideration the human
factors behind the development activities. Thus, given that we have investi-
gated the social aspects (developer experience, discussion activity, and collab-
oration networks) via the computation of software repository metrics, future
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studies could use other approaches, such as psychometric instruments. Such
instruments are widely used in social sciences and psychology [174, 175, 176].
Therefore, future studies could explore the proper use of the knowledge on
these disciplines to better understand social aspects that emerge during code
reviews and how they establish a cause-effect relationship with design degra-
dation.

Future work 9: The dashboard proposition to help development team
managers. One of the potential outputs of this thesis is the proposition of
a dashboard to helps managers to keep attention or monitor the health of
their team concerning the social aspects during the software development
activities [185]. For instance, future work can build a dashboard that shows the
set of social aspects (represented by metrics) investigated in this thesis. Thus,
managers can monitor, for instance, whether there is high team participation
in review activities, or whether there are design discussions or not. Such
information can give insights to managers about how to improve their team in
different contexts or thinking about strategies to minimize certain practices or
aspects that may influence the quality of systems.
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